• Title/Summary/Keyword: Superficial gas velocity

Search Result 53, Processing Time 0.017 seconds

Design of Recycle Bubble Column Reactor for Continuous Enzymatic Hydrolysis of Cellulose (섬유소의 연속 효소 가수분해를 위한 순환식 기포탑 반응기의 설계)

  • 김춘영;홍석표정봉우이태원
    • KSBB Journal
    • /
    • v.5 no.1
    • /
    • pp.59-67
    • /
    • 1990
  • Enzymatic hydrolysis of insoluble cellulose was performed in a bubble column with tangential flow ulrafiltration membrane unit. The reactor was operated in a batch mode as well as semi-continuous and continuous with continuous removal of products through the tangential flow ultrafiltration membrane. The optimum superficial gas velocity was 1-3cm / sec so as to avoid bubble coalescence and enzyme denaturation. In continuous and selni-cotinuous process, the conversion was gradually increased but the total reduced sugar concentration was drcastically dereased with the dilution rate. It was concluded that the bubble column attaching tangential flow ultrafiltration membrane unit was effective on continuous hydrolysis of cellulose and recovery of enzyme.

  • PDF

Evaluation of CO2 Removal Efficiency in Liquor plant by scrubber (스크러버를 이용한 주류공정 내 고농도 이산화탄소 제거효율 평가)

  • Park, Il Gun;Park, Yeong Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.986-994
    • /
    • 2017
  • In this paper, $CO_2$ absorption of scrubber was tested for removal of high concentration $CO_2$. Liquid to gas ratio($18L/m^3$) and Superficial velocity(0.14 m/s) was determined through Lab-scale test. As flow rates increase 1, 2, 3, 4 and $5m^3/min$, $CO_2$ removal efficiency decrease 98.47%, 96.46%, 92.95%, 89.71% and 85.49%. Also, the scrubber operation made energy improvement(5.4%), energy saving(11.5 TOE/year) and greenhouse gases reduction(6.5 TC/year).

A Study on the Effect of Fluidizing Media on the N2O Production in Fluidized Bed Incineration of Sewage Sludge (하수슬러지 유동층 소각에서 유동매체가 N2O 발생에 미치는 영향에 관한 연구)

  • Park, Jong-Ju;Lee, Seung-Jae;Ryu, In-Soo;Jeon, Sang Goo;Park, Yeong-Sung;Moon, Seung-Hyun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.390-397
    • /
    • 2014
  • This study was performed to investigate the effects of fluidizing media on $N_2O$ production in fluidized bed incineration of sewage sludge. The fluidized media were prepared in a form of 2 mm bead by mixing zeolite powders in our lab. Sand having 0.4 mm of the mean size showed 0.44 m/s of minimum fluidization velocity ($U_{mf}$), while the prepared zeolite media 0.5 m/s. When the ratio of fluidizing media height to the inside diameter of the incinerator (bed aspect ratio) increased from 1.4 to 3.1, it was found that $U_{mf}$ of the zeolite media was varied from 0.5 m/s to 0.7 m/s. Under the operation conditions in 1.79 of excess air ratio, $909^{\circ}C$ of bed temperature and ca. 1.65 m/s of superficial velocity, as the weight of fluidizing meadia was increased, $O_2$ concentration in the flue gas was slightly decreased, and $CO_2$ increased. Above 6 kg of fluidizing media weight (1.98 of bed aspect ratio), it was observed that $N_2O$ concentration was significantly reduced, which might result from the decomposition of $N_2O$ on the zeolite media rather than transformation of $N_2O$ to NOx. On the other hand, in a variation of the zeolite media mixing ratio to sand and bed temperature at a constant total bed height, significant difference was exhibited in $N_2O$ emission concentration according to the temperature. Considering the operation temperature in the incineration, the effective calcination temperature of the zeolite media was suggested to be around $900^{\circ}C$.