• Title/Summary/Keyword: Supercritical-Point

Search Result 60, Processing Time 0.032 seconds

An Equation of State to Meet the Boundary Conditions between Critical Point and Inversion Points (임계온도와 반전점들 사이의 경계조건에서 구한 기체의 상태방정식)

  • Seung-Hee Kim;Wonsoo Kim;Tong-Seek Chair
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.487-492
    • /
    • 1991
  • $[P+a(b/v)^n]$ = RT / (V - b) Above equation of state had been derived from Roulette theory. Three parameters-a, b, n are estimated from the critical point and the inversion temperature. When it is applied to 52 materials and to the regions of high density such as dense gas and supercritical gas, the results are good.

  • PDF

Heat Transfer Characteristics of an Annulus Channel Cooled with R-134a Fluid near the Critical Pressure (임계압력 근처에서의 환형관 채널에 대한 열전달 특성 연구)

  • Hong, Sung-Deok;Chun, Se-Young;Kim, Se-Yun;Baek, Won-Pil
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2094-2099
    • /
    • 2004
  • An experimental study on heat transfer characteristics near the critical pressure has been performed with an internally-heated vertical annular channel cooled by R-134a fluid. Two series of tests have been completed: (a) steady-state critical heat flux (CHF) and (b) heat transfer tests for pressure reduction transients through the critical pressure. In the present experimental range, the steady-state CHF decreases with the increase of the system pressure For a fixed inlet mass flux and subcooling, the CHF falls sharply at about 3.8 MPa and shows a trend toward converging to zero as the pressure approaches the critical point of 4.059 MPa. The CHF phenomenon near the critical pressure does not lead to an abrupt temperature rise of the heated wall because the CHF occurred at remarkably low power levels. In the pressure reduction transient experiments, as soon as the pressure passed through the critical pressure, the wall temperatures rise rapidly up to a very high value due to the occurrence of the departure from nucleate boiling. The wall temperature reaches a maximum at the saturation point of the outlet temperature, then tends to decrease gradually.

  • PDF

Study of Supercritical Carbon Dioxide/n-Butyl Acetate Co-solvent System with High Selectivity in Photoresist Removal Process (포토레지스트 공정에서 높은 선택성을 가지는 초임계 이산화탄소/n-butyl acetate 공용매 시스템 연구)

  • Kim, Dong Woo;Heo, Hoon;Lim, Kwon Teak
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.357-363
    • /
    • 2017
  • In this study, the supercritical carbon dioxide ($scCO_2$)/ n-butyl acetate (n-BA) co-solvent system was employed to remove an unexposed negative photoresist (PR) from the surface of a silicon wafer. In addition, the selectivity of the $scCO_2$/n-BA co-solvent system was confirmed for the unexposed and exposed negative PR. Optimum conditions for removal of the unexposed PR were obtained from various conditions such as pressure, temperature and n-BA ratio. The n-BA was highly soluble in $scCO_2$ without cloud point and phase separation in mostly experimental conditions. However, the $scCO_2$/n-BA co-solvent was phase separated at 100 bar, above $80^{\circ}C$. The unexposed and exposed PR was swelled in $scCO_2$ solvent at all experimental conditions. The complete removal of unexposed PR was achieved from the reaction condition of 160 bar, 10 min, $40^{\circ}C$ and 75 wt% n-BA in $scCO_2$, as measured by ellipsometry. The exposed photoresist showed high stability in the $scCO_2$/n-BA co-solvent system, which indicated that the $scCO_2$/n-BA co-solvent system has high selectivity for the PR removal in photo lithograph process. The $scCO_2$/n-BA co-solvent system not only prevent swelling of exposed PR, but also provide efficient and powful performance to removal unexposed PR.

Mixing Characteristics of Kerosene-Lox in a Swirl Injector at 100 bar

  • Heo, Junyoung;Kang, Jeongseok;Sung, Hong-Gye
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.30-38
    • /
    • 2016
  • The The turbulent mixing characteristics of Kerosene-LOx in a coaxial swirl injector 100 bar have been numerically investigated. Turbulent model is based on large eddy simulation with real-fluid transport and thermodynamics. The effects of equation of state (EOS), chamber pressure are evaluated in a point of the mixing efficiency and pressure fluctuations. The dominant frequency is same as the hairpin vortex shedding frequency generated by film wave at the LOx post.

Viscosity of Binary Gas Mixture from the Calculation by Using the Brake Theory of Viscosity (Brake 점성이론으로 계산한 이성분기체의 점성)

  • Kim, Won-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.3
    • /
    • pp.243-248
    • /
    • 2004
  • Brake theory of viscosity, which can sucessfully calculate the viscosity of real gases, dense gases and liquids, is extended to the binary gas mixture. Adjustable parameters are not involved, but the calculated results are good agreements with the experimental values at high pressure as well as low pressure. Corresponding state equation for viscosity can be obtained by using the Redlich-Kwong equation, so that we hope this equation may be useful for the supercritical fluid in engineering applications at high pressure around the critcal point.

Investigation on a Prediction Methodology of Thermodynamic Properties of Supercritical Hydrocarbon Aviation Fuels (초임계 탄화수소 항공유의 열역학적 물성치 예측 기법 연구)

  • Hwang, Sung-rok;Lee, Hyung Ju
    • Journal of ILASS-Korea
    • /
    • v.26 no.4
    • /
    • pp.171-181
    • /
    • 2021
  • This study presents a prediction methodology of thermodynamic properties by using RK-PR Equation of State in a wide range of temperature and pressure conditions including both sub-critical and super-critical regions, in order to obtain thermophysical properties for hydrocarbon aviation fuels and their products resulting from endothermic reactions. The density and the constant pressure specific heat are predicted in the temperature range from 300 to 1000 K and the pressure from 0.1 to 5.0 MPa, which includes all of the liquid and gas phases and the super-critical region of three representative hydrocarbon fuels, and then compared with those data obtained from the NIST database. Results show that the averaged relative deviations of both predicted density and constant pressure specific heat are below 5% in the specified temperature and pressure conditions, and the major sources of the errors are observed near the saturation line and the critical point of each fuel.

Effects of the Free-Stream Turbulence and Surface Trip Wire on the Flow past a Sphere (자유류 난류와 표면 트립 와이어가 구 주위 유동에 미치는 영향)

  • Son, Kwang-Min;Choi, Jin;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.187-190
    • /
    • 2006
  • In the present study, effects of tree-stream turbulence and surface trip wire on the flow past a sphere at $Re\;=\;0.4\;{\times}\;10^5\;{\sim}\;2.8\;{\times}\;10^5$ are investigated through wind tunnel experiments. Various types of grids are installed upstream of the sphere in order to change the tree-stream turbulence intensity. In the case of surface trip wire, 0.5mm and 2mm trip wires are attached from $20^{\circ}\;{\sim}\;90^{\circ}$ at $10^{\circ}$ interval along the streamwise direction. To investigate the flow around a sphere, drag measurement using a load cell, surface-pressure measurement, surface visualization using oil-flow pattern and near-wall velocity measurement using an I-type hot-wire probe are conducted. In the variation of free-stream turbulence, the critical Reynolds number decreases and drag crisis occurs earlier with increasing turbulence intensity. With increasing Reynolds number, the laminar separation point moves downstream, but the reattachment point after laminar separation and the main separation point are fixed, resulting in constant drag coefficient at each free-stream turbulence intensity. At the supercritical regime, as Reynolds number is further increased, the separation bubble is regressed but the reattachment and the main separation points are fixed. In the case of surface trip wire directly disturbing the boundary layer flow, the critical Reynolds number decreases further with trip wire located more downstream. However, the drag coefficient after drag crisis remains constant irrespective of the trip location.

  • PDF

Phase Equilibria of Ionic Liquid/Organic Compound/Supercritical CO2 Systems (이온성액체/유기화합물/초임계이산화탄소계의 상평형)

  • Lim, Bang-Hyun;Kim, Jong-Won;Paek, Sang-Min;Son, Bo-Kook;Lee, Yong-Rok;Lee, Chul Soo;Lee, Huen;Ra, Chun-Sup;Shim, Jae-Jin
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.128-137
    • /
    • 2006
  • The volume change of an ionic liquid and the phase separation behavior of room temperature ionic liquid(RTIL)/organic compound mixture in supercritical carbon dioxide were measured in a high pressure view cell. 1-Butyl-3-methylimidazolium hexafluorophosphate ([bmim][$PF_6$]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][$BF_4$]) was used as ionic liquid(IL). and methanol and dimethyl carbonate were used as organic compound. For a fixed amount of [bmim][$PF_6$] the lower critical endpoint (LCEP) pressure, where the liquid phase is split, decreased as increasing the amount of organic compound. The LCEP pressure became higher as the water content of ionic liquid was higher. However, for water contents above a certain value, no LCEP was formed. LCEP appeared 1.0 MPa higher for a mixture with [bmim][$BF_4$] than with [bmim][$PF_6$]. There was almost no difference in the K-point pressures for different types of ionic liquid and for different amounts of organic liquid. When the concentration of ionic liquid([bmim][$PF_6$]) (IL/(IL+MeOH)) in the initial liquid mixture was larger than 5.9 mol% at the LCEP of the mixture, the volume of $L_1$ because larger than the volume of $L_2$. When it was smaller, however, the volume became smaller, too. The volume change of ionic liquid in the presence of carbon dioxide decreased as increasing the temperature, while it increased as increasing the pressure. For temperatures between 313.15 to 343.15K at 300 bar, it was about 123~125 % of the original volume.

  • PDF

Optimization for Extraction of ${\beta}-Carotene$ from Carrot by Supercritical Carbon Dioxide (초임계 유체에 의한 당근의 ${\beta}-Carotene$ 추출의 최적화)

  • Kim, Young-Hoh;Chang, Kyu-Seob;Park, Young-Deuk
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.411-416
    • /
    • 1996
  • Supercritical fluid extraction of ${\beta}$-carotene from carrot was optimized to maximize ${\beta}$-carotene (Y) extraction yield. A central composite design involving extraction pressure ($X_1$ 200-,100 bar), temperature ($X_2,\;35-51^{\circ}C$) and time ($X_1$$ 60-200min) was used. Three independent factors ($X_1,\;X_2,\;X_3$) were chosen to determine their effects on the various responses and the function was expressed in terms of a quadratic polynomial equation,$Y={\beta}_0+{\beta}_1X_1+{\beta}_2X_2+{\beta}_3X_3+{\beta}_11X_12+{\beta}_22X_3^2+{\beta}_-12X_1X_2+{\beta}_12X_1X_2+{\beta}_13X_1X_3+{\beta}_23X_2X_3,$ which measures the linear, quadratic and interaction effects. Extraction yields of ${\beta}$-carotene were affected by pressure, time and temperature in the decreasing order, and linear effect of tenter point (${\beta}_11$) and pressure (${\beta}_1$) were significant at a level of 0.001(${\alpha}$). Based on the analysis of variance, the model fitted for ${\beta}_11$-carotene (Y) was significant at 5% confidence level and the coefficient of determination was 0.938. According to the response surface of ${\beta}$-carotene by cannoical analysis, the stationary point for quantitatively dependent variable (Y) was found to be the maximum point for extraction yield. Response area for ${\beta}$-carotene (Y) in terms of interesting region was estimated over $10,611{\mu}g$ Per 100 g raw carrot under extraction.

  • PDF

Phase Behavior of Poly(methylmethacrylate) (PMMA) in Varions Solvents at High Pressure (고압상태의 다양한 용매 내에서 Poly(methylmethacrylate) (PMMA)의 상거동)

  • Kim, Je-Il;Yoo, Ki-Pung;Lim, Jong-Sung
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.28-33
    • /
    • 2007
  • We measured cloud points of Poly(methylmethacrylate) (PMMA) in various solvents using the high-pressure variable volume view cell apparatus. The solvents used for dissolving PMMA were chlorodifluoromethane (HCFC-22), dimethylether (DME), 1,1,1-trifluoroethane (HFC-143a), 1,1-difluoroethane (HFC-152a) and 1,1,1,2-tetrafluoroethane (HFC-134a), and the effect of $CO_2$ concentration on the phase behavior of $PMMA+HCFC-22+CO_2$ system and $PMMA+DME+CO_2$ system was observed. PMMA was dissolved well in HCFC-22 from about 340 K, 5MPa and in DME from about 300 K, 28MPa. However, PMMA was not dissolved at all up to 423.15 K, 160MPa in the other fluorine compound such as HFC-l43a, HFC-152a and HFC-134a. PMMA+HCFC-22, $PMMA+HCFC-22+CO_2$ and PMMA+DME systems exhibit the lower critical solution temperature (LCST) behavior, however, $PMMA+DME+CO_2$ system exhibits the upper critical solution temperature (UCST) behavior. In the $CO_2$ mixture, the cloud point pressure of PMMA was increased dramatically proportional to the amount of $CO_2$ added, and from this result, it was known that $CO_2$ could be used as an antisolvent for fabricating PMMA nano-particles. And the cloud point of PMMA could be controlled by changing the concentration of $CO_2$.

  • PDF