• Title/Summary/Keyword: Supercritical-Point

Search Result 60, Processing Time 0.034 seconds

계면활성제/1-Hoxanol/물 혼합물의 상태도와 전기 전도도에 관한 연구

  • 오성근;김종득
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.12 no.1
    • /
    • pp.34-61
    • /
    • 1986
  • The microstructural transitions of aqueous micellar solutions of cetyltrime-thylammonium bromide and sodiumdodecyl sulfate by adding 1-hexanol were investigated, measuring the concentrations of equilibrated phases and the electrical conductivities at the low concentrations of surfactants, where the solobilities of 1-hexanol varied significantly, at 3$0^{\circ}C$ and 45$^{\circ}C$. Ternary phase diagrams of multiphase regions, constructed by liquid chromatography analysis and by counting the number of phase of samples, consisted of one three-phase region and three two-phase regions. One of the two-phase regions was found to equilibrate an aqueous micellar solution and a liquid crystal, and had a critical point between them. Near this region, the solubility curve varied abruptly, and the isotropic solution turned birefrigent. The conductivities of the single phase regions above the critical point increased up to a certain point as 1-hexanol added, and then decreased, representing the microstructural transition at the supercritical region. Further, the solubility of 1-hexanol in aqueous micellar solution was found to increase as temperature and the number of hydrophilelipophile balance of surfactants increase.

  • PDF

Bubble-Point Measurement of Binary Mixture for the CO2 + Caprolactone Acrylate System in High Pressure

  • Jeong, Jong-Dae;Byun, Hun-Soo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.826-831
    • /
    • 2019
  • Experimental data of phase equilibrium is reported for caprolactone acrylate in supercritical carbon dioxide. Bubble-point data was measured by synthetic method at temperatures ranging from (313.2 to 393.2) K and pressures up to 55.93 MPa. In this research, the solubility of carbon dioxide for the (carbon dioxide + caprolactone acrylate) system decreases as temperature increases at a constant pressure. The (carbon dioxide + caprolactone acrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + caprolactone acrylate) system was correlated with Peng-Robinson equation of state using mixing rule. The critical property of caprolactone acrylate was predicted with the Joback and Lyderson method.

Preparation and Evaluation of Paclitaxel Solid Dispersion by Supercritical Antisolvent Process (초임계유체를 이용한 파클리탁셀고체분산체의 제조 및 평가)

  • Park, Jae-Hyun;Chi, Sang-Cheol;Woo, Jong-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.4
    • /
    • pp.241-247
    • /
    • 2008
  • Paclitaxel is a taxane diterpene amide, which was first extracted from the stem bark of the western yew, Taxus brevifolia. This natural product has proven to be useful in the treatment of a variety of human neoplastic disorders, including ovarian cancer, breast and lung cancer. Paclitaxel is a highly hydrophobic drug that is poorly soluble in water. It is mainly given by intravenous administration. Therefore, The pharmaceutical formulation of paclitaxel ($Taxol^{(R)}$; Bristol-Myers Squibb) contains 50% $Cremophor^{(R)}$ EL and 50% dehydrated ethanol. However the ethanol/Cremophor EL vehicle required to solubilize paclitaxel in $Taxol^{(R)}$ has a pharmacological and pharmaceutical problems. To overcome these problems, new formulations for paclitaxel that do not require solubilization by $Cremophor^{(R)}$ EL are currently being developed. Therefore this study utilized a supercritical fluid antisolvent (SAS) process for cremophor-free formulation. To select hydrophilic polymers that require solubilization for paclitaxel, we evaluated polymers and the ratio of paclitaxel/polymers. HP-${\beta}$-CD was used as a hydrophilic polymer in the preparation of the paclitaxel solid dispersion. Although solubility of paclitaxel by polymers was increased, physical stability of solution after paclitaxel/polymer powder soluble in saline was unstable. To overcome this problem, we investigated the use of surfactants. At 1/20/40 of paclitaxel/hydrophilic polymer/ surfactant weight ratio, about 10 mg/mL of paclitaxel can be solubilized in this system. Compared with the solubility of paclitaxel in water ($1\;{\mu}g/mL$), the paclitaxel solid dispersion prepared by SAS process increased the solubility of paclitaxel by near 10,000 folds. The physicochemical properties was also evaluated. The particle size distribution, melting point and amophorization and shape of the powder particles were fully characterized by particle size distribution analyzer, DSC, SEM and XRD. In summary, through the SAS process, uniform nano-scale paclitaxel solid dispersion powders were obtained with excellent results compared with $Taxol^{(R)}$ for the physicochemical properties, solubility and pharmacokinetic behavior.

Prediction of partial molar volumes of solutes in supercritical CO2 using the Peng-Robinson equation of state with various mixing rules and Kirkwood-Buff solution theory (3차 상태방정식과 여러 혼합법칙 및 Kirkwood-Buff용액이론을 이용한 초임계유체내에서의 용질의 무한희석 부분몰부피의 계산)

  • Jeon, Young-Pyo;Park, Jong-Seon;Kwon, Yong-Jung
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.253-260
    • /
    • 1999
  • Two thermodynamic models were used to predict the partial molar volumes of solutes in supercritical carbon dioxide at infinite dilution: (1) the Peng-Robinson equation of state with various mixing rules including those based on $EOS/G^E$ (2) the Kirkwood Buff fluctuation integral with the hard sphere expansion (HSE) method. The Kirkwood-Buff fluctuation integral method, in which an equation of state for pure component and molecular parameters are required, produced better results especially near the critical point than the Peng-Robinson equation of state with the several mixing rules based an $EOS/G^E$. When the $EOS/G^E$ mixing rules were used, poorer results were obtained compared with the classical mixing rule and Kirkwood-Buff model.

  • PDF

Removal of Paraffin Wax from Ceramic Injection Mold Using Supercritical Carbon Dioxide (세라믹 사출성형체로부터 초임계이산화탄소를 이용한 파라핀왁스의 제거)

  • Kim, Dong-Hyun;Hong, Seung-Tae;Yoo, Ki-Pung;Lim, Jong-Sung
    • Clean Technology
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Removal of paraffin wax from a ceramic injection mold using supercritical $CO_2$ has been studied. The paraffin wax is used as a binder in the ceramic injection molding process. The effects of pressure, temperature and flow rate of supercritical $CO_2$ on the removal of the paraffin wax were investigated. The removal rates were measured with various flow rates of $CO_2$ in the range of 328.15 - 348.15 K and 15 - 30 MPa. The removal rate of paraffin wax increased as the pressure increased. In the effect of temperature, the paraffin wax was effectively removed over 329.15K (melting point of paraffin wax), however, the efffct of temperature was not significant when the temperature was further increased. The increase of $CO_2$ flow rate also affected the removal of paraffin wax. However, the effect of flow rate was not observed when the flow rate reached a certain value. Propane was used as a co solvent in order to remove the paraffin wax effectively. When the propane was added to the $CO_2$, the removal efficiency was improved. The paraffin wax was completely removed from the ceramic injection mold without any change in their shape and the structure.

  • PDF

Surface Properties of the High Porous Carbon Aerogels (고다공성 카본 에어로젤(C-Aerogel) 표면 특성)

  • Kim, Ji-Hye;Lee, Chang-Rae;Jeong, Young-Soo;Kim, Yang-Do;Kim, In-Bae
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.114-120
    • /
    • 2008
  • The pyrolysized carbon xerogel and aerogels were prepared from the sol-gel polymerization of resorcinol-formaldehyde(RF) followed by the dry process under ambient pressure and supercritical carbon dioxide condition respectively. The thermal behaviour of RF polymer xerogel was investigated with TGA analyzer to correspond with the pyrolysis process. The surface properties such as particle size, morphology and the point of zero charge of the pyrolysized porous carbon aerogels were studied for the precious metal catalyst supported media. It was found that the volume of the polymer aerogel decreased because of the significant linear shrinkage and weight loss of polymer gel during the carbonization. The point of zero charge of the carbon aerogel pyrolysized at $1050^{\circ}C$ under inert gas flow was about 10.

Phase Behavior on the Binary and Ternary System of Poly(propyl acrylate) and Poly(propyl methacrylate) with Supercritical Solvents (초임계 용매를 포함한 Poly(propyl acrylate)와 Poly(propyl methacrylate)의 이성분 및 삼성분계에 관한 상거동)

  • Byun, Hun-Soo;Lee, Ha-Yeun
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.703-708
    • /
    • 2002
  • High pressure phase behavior data for poly(propyl acrylate) and poly(propyl methacrylate) with supercritical $CO_2$, ethylene, propane, butane, propylene, 1-butene, dimethyl ether, and $CHClF_2$ were measured in the temperature range from $23^{\circ}C$ to $186^{\circ}C$ and at pressures up to 2,400 bar. The cloud point were obtained at dissolved pressure below 2,070, 1,400, 1,880, 450, 2,200, 250, and 150 bar for poly(propyl acrylate) in supercritical $CO_2$, ethylene, propane, propylene, butane, 1-buthen, and dimethyl ether, respectively. The temperature range is $23-175^{\circ}C$. The poly(propyl methacrylate) does not dissolve in $CO_2$ at temperature of $240^{\circ}C$ and pressure 2,900 bar. The poly(propyl methacrylate)-propane, poly(propyl methacrylate)-butane, poly(propyl methacrylate)-propylene, poly(propyl methacrylate)-1-butene, and poly(propyl methacrylate)-$CHClF_2$ systems were dissolved at the pressures less than 2,390 bar, below 2,100 bar, below 570 bar, below 310 bar, below 300 bar, and below 170 bar, respectively. The temperature range shows from 40 to $186^{\circ}C$. The phase behavior of between binary poly(propyl acrylate)-$CO_2$ and poly(propyl acrylate)-dimethyl ether system were measured from upper critical solution temperature region to lower critical solution temperature region with added dimethyl ether concentrations of 5, 15 and 50 wt%.

Phase Behavior of Sorbitan Monopalmitate Surfactant in Supercritical Carbon Dioxide (초임계 이산화탄소에서 소르비탄 모노팔미테이트 계면활성제의 상거동에 관한 연구)

  • Oh, Kyung Hwan;Kim, Eun Jin;Shin, Hun Yong
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.8-12
    • /
    • 2013
  • Phase behavior of carbon dioxide + surfactant binary system and carbon dioxide + surfactant + water ternary system was investigated at the temperatures from 318 K to 348 K by using high pressure vapor liquid equilibrium apparatus containing variable-volume view cell. Sorbitan monopalmitate was used as the surfactant. The cloud point pressures for the binary mixture of carbon dioxide + sorbitan monopalmitate increased with an increasing of system temperatures and the maximum cloud point pressure was observed at the composition of 0.226 wt% of sorbitan monopalmitate. On the other hand, as the temperatures and compositions of water increased, the cloud point pressures for ternary system containing 0.1 wt% of sorbitan monopalmitate increased significantly. For the ternary system of constant 0.2 wt% of water, the cloud point pressure curves show relatively flat according to the change of compositions of surfactant. The cloud point pressures increased when the temperatures and compositions of water increased.

Study of the flow around a cylinder from the subcritical to supercritical regimes

  • Zhang, Xian-Tao;Li, Zhi-Yu;Fu, Shi-Xiao;Ong, Muk Chen;Chen, Ying
    • Ocean Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.185-200
    • /
    • 2014
  • The objective of the present simulations is to evaluate the applicability of the standard $k-{\varepsilon}$ turbulence model in engineering practice in the subcritical to supercritical flow regimes. Two-dimensional numerical simulations of flow around a circular cylinder at $Re=1{\times}10^5$, $5{\times}10^5$ and $1{\times}10^6$, had been performed using Unsteady Reynolds-Averaged Navier Stokes (URANS) equations with the standard $k-{\varepsilon}$ turbulence model. Solution verification had been studied by evaluating grid and time step size convergence. For each Reynolds number, several meshes with different grid and time step size resolutions were chosen to calculate the hydrodynamic quantities such as the time-averaged drag coefficient, root-mean square value of lift coefficient, Strouhal number, the coefficient of pressure on the downstream point of the cylinder, the separation angle. By comparing the values of these quantities of adjacent grid or time step size resolutions, convergence study has been performed. Solution validation is obtained by comparing the converged results with published numerical and experimental data. The deviations of the values of present simulated quantities from those corresponding experimental data become smaller as Reynolds numbers increases from $1{\times}10^5$ to $1{\times}10^6$. This may show that the standard $k-{\varepsilon}$ model with enhanced wall treatment appears to be applicable for higher Reynolds number turbulence flow.

Effects of inlet working condition and heat load on supercritical CO2 compressor performance

  • Jinze Pei;Yuanyang Zhao;Mingran Zhao;Guangbin Liu;Qichao Yang;Liansheng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2812-2822
    • /
    • 2023
  • The supercritical carbon dioxide (sCO2) Brayton power cycle is more effective than the conventional power cycle and is more widely applicable to heat sources. The inlet working conditions of the compressor have a higher influence on their operating performance because the thermophysical properties of the CO2 vary dramatically close to the critical point. The flow in the sCO2 compressor is simulated and the compressor performance is analyzed. The results show that the sCO2 centrifugal compressor operates outside of its intended parameters due to the change in inlet temperature. The sCO2 compressor requires more power as the inlet temperature increases. The compressor power is 582 kW when the inlet temperature is at 304 K. But the power is doubled when the inlet temperature increases to 314 K, and the change in the isentropic efficiency is within 5%. The increase in the inlet temperature significantly reduces the risk of condensation in centrifugal compressors. When the heat load of the sCO2 power system changes, the inlet pressure to the turbine can be kept constant by regulating the rotational speed of compressors. With the increase in rotational speed, the incidence loss and condensation risk increase.