• Title/Summary/Keyword: Supercritical pressure

Search Result 416, Processing Time 0.03 seconds

Low Pressure Synthesis of Silica Aerogels by Supercritical Drying (초임계 건조에 의한 실리카 에어로겔의 저압 합성)

  • 김동준;현상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.485-494
    • /
    • 1996
  • Silica Aerogels with the density and porosity of 0.1g/cm3 and 96% were synthesized by two different supercri-tical drying processes (i.e additional solvent and intial pressure methods) Isoptopanol was chosen as sol-gel and supercritical drying solvents in order to synthesize aerogels at the lower temperature and pressure because the critical values of isopropanol are lower than those of methanol and ethanol commonly used. The P-V-T relationship of isopropanol was experimentally described for optimizing supercritical drying conditions such as the amount of extra solvent and supercritical drying temperature and pressure. In the addional solvent method monolithic and transparent aerogels were obtained by supercritical drying at 25$0^{\circ}C$ and 900 psing after 40% of the reactor volume was filled with isopropanol. Crack-free aerogels were synthesized at 25$0^{\circ}C$ and 1100~1200 psig by the initial pressure method with an intial nitrogen gas pressure of 400 psig and the isopropanol amount of 5% of the reactor volume.

  • PDF

A Study on Dyeing Properties of Nylon 6 Fabrics in Supercritical Fluid Dyeing System (I): Depending on Temperature and Pressure (Nylon 6 섬유의 초임계 유체 염색특성 연구 (I): 온도, 압력의 변화)

  • Ko, Eunhee;Lee, Inyeol;Kim, Changil
    • Textile Coloration and Finishing
    • /
    • v.32 no.2
    • /
    • pp.80-88
    • /
    • 2020
  • Supercritical fluid dyeing is a new alternative to the conventional aqueous process because of its environmental benefits. In this study, dyeing properties of Nylon 6 fabrics were investigated depending on dyeing temperature and pressure in supercritical CO2 fluid dyeing system. In order to select the optimal condition for supercritical fluid dyeing of Nylon 6 fabrics, dyeing temperature and pressure were varied from 100, 110, 120℃, 200, 230, 260bar, respectively. The results of K/S values and levelling properties showed that the optimal dyeing condition for Nylon 6 fabrics was 110℃ and 230bar in the supercritical CO2 fluid dyeing system. The washing fastness ratings of the dyed Nylon 6 fabrics under supercritical medium were good for both fading and staining except for staining on nylon.

Direct Numerical Simulation of Turbulent Heat Transfer to Water at Supercritical Pressure Flowing in Vertical Pipes (수직원형관내 초임계압 물의 난류 열전달에 관한 직접수치모사)

  • Lee, Sang-Hoon;Bae, Joong-Hun;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2471-2476
    • /
    • 2008
  • Turbulent flow and heat transfer to water at supercritical pressure flowing in vertical pipes is investigated using direct numerical simulation (DNS). A conservative space-time discretization scheme for variable-density flows at low Mach numbers is adopted in the present study to treat steep variations of fluid properties at supercritical pressure just above the thermodynamic critical point. The fluid properties at these conditions are obtained using PROPATH and used in the form of tables in the simulations. The buoyancy influence induced by strong variation of density across the pseudo-critical temperature proved to play an important role in turbulent flow and heat transfer at supercritical state. Depending on the degree of buoyancy influence, turbulent heat transfer may be enhanced or significantly deteriorated, resulting in local hot spots along the heated surface.

  • PDF

RESEARCH ACTIVITIES ON A SUPERCRITICAL PRESSURE WATER REACTOR IN KOREA

  • Bae, Yoon-Yeong;Jang, Jin-Sung;Kim, Hwan-Yeol;Yoon, Han-Young;Kang, Han-Ok;Bae, Kang-Mok
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.273-286
    • /
    • 2007
  • This paper presents the research activities performed to date for the development of a supercritical pressure water-cooled reactor (SCWR) in Korea. The research areas include a conceptual design of an SCWR with an internal flow recirculation, a reactor core conceptual design, a heat transfer test with supercritical $CO_2$, an adaptation of an existing safety analysis code to the supercritical pressure condition, and an evaluation of candidate materials through a corrosion study. Methods to reduce the cladding temperature are introduced from two different perspectives, namely, thermal-hydraulics and core neutronics. Briefly described are the results of an experiment on the heat transfer at a supercritical pressure, an experiment that is essential for the analysis of the subchannels of fuel assemblies and the analysis of a system safety. An existing system code has been adapted to SCWR conditions, and the process of a first-hand validation is presented. Finally, the corrosion test results of the candidate materials for an SCWR are introduced.

Efficient Extraction of Bioethanol from Freshwater Cyanobacteria Using Supercritical Fluid Pretreatment

  • Pyo, Dongjin;Kim, Taemin;Yoo, Jisun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.379-383
    • /
    • 2013
  • For the production of ethanol from freshwater cyanobacteria, a new pretreatment method using supercritical fluid was introduced. In this study, it was found that the supercritical fluid could penetrate inside the cell wall and help to liberate starch from cyanobacterial cells which resulted in the increase of the efficiency of ethanol production. For Microcystis aeruginosa, supercritical fluid pretreatment increased the amount of ethanol produced from cyanobacteria from 1.53 g/L to 2.66 g/L. For Anabaena variabilis, the amount of ethanol was increased from 1.25 g/L to 2.28 g/L. With use of supercritical fluid pretreatment, the efficiency of the process to obtain higher ethanol yields from freshwater cyanobacteria was improved upto 80%. The optimum temperature and pressure conditions for supercritical fluid pretreatment were determined as the temperature of $40^{\circ}C$ and the pressure of 120 atm. This study demonstrates the feasibility of using supercritical fluid pretreatment for ethanol production using freshwater cyanobacteria.

Crystallization and Molecular Relaxation of Poly(Ethylene Terephthalate) Annealed in Supercritical Carbon Dioxide

  • Jung, Yong-Chae;Cho, Jae-Whan
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.284-288
    • /
    • 2005
  • Poly(ethylene terephthalate) was annealed at different temperature and pressure of supercritical carbon dioxide $(CO_2)$ using samples quenched from the melt. Crystallization and molecular relaxation behavior due to $CO_2-annealing$ of samples were investigated using differential scanning calorimetric and dynamic mechanical measurements. The glass transition and crystallization temperatures significantly decreased with increasing temperature and pressure of $CO_2$. The dynamic mechanical measurement of samples annealed at $150^{\circ}C$ in supercritical $CO_2$ showed three relaxation peaks, corresponding to existence of different amorphous regimes such as rigid, intermediate, and mobile domains. As a result, the mobile chains were likely to facilitate crystallization in supercritical state. It also led to the decreased modulus of $CO_2-annealed$ samples with increasing pressure.

Correlation between Volume and Pressure of Dichloromethane using Equation of State (상태방정식을 이용한 디클로로메탄의 부피와 압력간 상관관계 연구)

  • Kwon, Woong;Kim, Jiyun;Lee, Kwonyun;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.141-146
    • /
    • 2021
  • Supercritical fluid has excellent dissolving power for various materials based on low viscosity and high diffusion coefficient and is used as solvents in various chemical processes. However, its industrial application can be very tricky because the design, especially the size of the supercritical apparatus, should be carefully chosen to optimize the cost and the production of supercritical fluidic state. And the first step of the supercritical fluid apparatus design is to choose the appropriate size of the reactor vessel to produce supercritical fluid above its critical pressure and temperature. Therefore, this study aims to analyze thermodynamic behaviors of dichloromethane based on ideal gas, van der Waals, Redlich-Kwong, Soave-Redlich-Kwong, and Peng-Robinson equations of state. The correlation between the volume and pressure of dichloromethane at 200℃ was revealed and it can be used to design the optimized size of the supercritical apparatus for industrial production.

An Experimental Study on Heat Transfer and Pressure Drop Characteristics during Supercritical Process of Carbon Dioxide in a Horizontal Tube (수평관 내에서 이산화탄소 초임계 가스냉각 과정의 열전달 및 압력강하 특성에 관한 실험적 연구)

  • 최이철;강병하;김석현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.414-420
    • /
    • 2004
  • The heat transfer and pressure drop characteristics associated with the gas cooling of the supercritical carbon dioxide in a horizontal tube have been investigated experimentally. This problem is of particular interest in the design of a gas cooler of cooling systems using $CO_2$refrigerant. The test section is consisted of 6 series of 455 mm in length, 4.15 mm ID copper tube, respectively. The effects of the inlet temperature, pressure and mass flow rate on the heat transfer and pressure drop of $CO_2$in a horizontal tube is studied in detail. The heat transfer coefficient of $CO_2$is varied by temperature, inlet pressure, and mass flow rate of $CO_2$. This has maximum value at near the pseudocritical temperature. The pressure drop is changed by inlet pressure and mass flow rate of $CO_2$. The results have been compared with those of previous work. The heat transfer correlation at the supercritical gas cooling process is also suggested.

Experimental Study on the Heat Transfer Characteristics under the Supercritical Pressures (초임계압 열전달 특성에 관한 실험 연구)

  • Kang, Kyoung-Ho;Youn, Young-Jung;Park, Jong-Kuk;Choo, Yeon-Jun;Chun, Se-Young;Song, Chul-Hwa
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2242-2247
    • /
    • 2008
  • A series of experiments have been performed in a vertical tube of 9.4 mm inner diameter using the Freon, HFC-134a as working fluid medium under the supercritical pressure range. Two kinds of experiments, i.e. steady-state and pressure transient, have been carried out. As for the steady-state heat transfer experiment, the mass flux was in the range between 600 and $2000\;kg/m^2s$ and the maximum heat flux was $160\;kW/m^2$. The selected pressures were 4.1, 4.3 and 4.5 MPa which correspond to 1.01, 1.06 and 1.11 times the critical pressure, respectively. In the pressure transient experiments, the inlet pressures were varied from 3.8 to 4.5 MPa and vice versa in the pressure transient simulations. In this study, heat transfer correlation and criterion for the heat transfer deterioration are suggested under the supercritical pressures. And also heat transfer characteristics during the pressure transient are examined.

  • PDF