• Title/Summary/Keyword: Supercritical Fluids

Search Result 67, Processing Time 0.025 seconds

Detoxification of PCBs Containing Transformer Oil by Catalytic Hydrodechlorination in Supercritical Fluids (초임계유체 내 수첨탈염소반응에 의한 PCBs가 함유된 절연유의 무해화 연구)

  • Choi, Hye-Min;Kim, Jae-Hoon;Kim, Jae-Duck;Kang, Jeong-Won
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Catalytic hydrodechlorination of PCBs (polychlorinated biphenyls) included in the transformer oil was carried out to detoxify PCBs and to recycle the treated oil. Catalysts such as 0.98 wt% Pt and 0.79 wt% Pd on ${\gamma}$-alumina (${\gamma}-Al_2O_3$) support, 12.8 wt% Ni on ${\gamma}-Al_2O_3$, and 57.6 wt% Ni on silica-alumina ($SiO_2-Al_2O_3$) support were used for the catalytic hydrodechlorination. Various supercritical fluids such as carbon dioxide, propane and isobutane were used as reaction media. The effects of reaction temperature, reaction time, catalysts, and supercritical fluids on the catalytic hydrodechlorination were examined in detail. The detoxification degree increased in the order of Ni > Pd > Pt. This is possibly due to higher metal loading and larger metal size of the Ni catalyst. Below $175^{\circ}C,\;scCO_2$ was found as the most effective reaction media for the catalytic hydrodechlorination of PCBs included in the transformer oil.

Solubilities of Solids in Supercritical Fluids (Ⅰ) (초임계 유체내의 고체의 용해도 (Ⅰ))

  • Kim, Jeong Rim;Gyeong, Jin Beom
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.325-330
    • /
    • 1990
  • The solubilities of caffeine in supercritical ammonia were measured at various temperatures and pressures to represent the relationship between the solubility and the density of ammonia at desired temperature and pressure by means of a simple equation. Using the equation, the interaction virial coefficient between ammonia and caffeine has been determined to give the parameters of Lennard-Jones potential function for the system. Furthermore, there are comparisons and discussions of the interaction virial coefficients and Lennard-Jones potential functions determined by the same techniques from the solubility data of naphthalene in supercritical ammonia and of caffeine and naphthalene in supercritical carbon dioxide from existing data sources others.

  • PDF

NUMERICAL STUDIES ON FLOWS WITH STRONG PROPERTY VARIATIONS THROUGH STRAIGHT RECTANGULAR CHANNELS (곧은 사각채널을 통과하는 물성 변화가 큰 유동에 대한 수치해석)

  • Choi, Nam-Jung;Choi, Yun-Ho
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.74-84
    • /
    • 2007
  • The flowfield characteristics in a straight rectangular channel have been investigated through a numerical model to analyze the regenerative cooling system that is used in rocket engine cooling. The supercritical hydrogen coolant introduces strong property variations that have a major influence on the developing flow and heat transfer characteristics. Of particular interest is the improved understanding of the physical characteristics of such flows through parametric studies. The approach used is a numerical solution of the full Navier-Stokes equations in the three dimensional form including the arbitrary equation of state and property variations. The present study compares constant and variable property solutions for both laminar and turbulent flow. For laminar flow, the variation of aspect ratio is examined, while for turbulent flow, the effects of variation of channel length and Reynolds number are discussed.

Characteristics of Extraction of Daidzein and Genistein in Soybean Using Sub/Supercritical Fluids (아임계/초임계 유체를 이용한 콩에 포함된 Daidzein과 Genistein의 추출특성)

  • Choi, Du Young;Zheng, Jinzhu;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.609-613
    • /
    • 2005
  • Daidzein and genistein were extracted from Korean soybean by supercritical $CO_2$ and sub/supercritical water. The extracted sample was analyzed by reversed-phase high performance liquid chromatography (RP-HPLC). The retention time, retention factor, column efficiency, column selectivity and resolution of aglycons were compared with the change in the temperature and pressure of supercritical fluid and ethanol concentration. The characteristics of extraction of daidzein and genistein were more affected by ethanol concentration using supercritical $CO_2$. The most desirable extraction yield was obtained by supercritical $H_2O$ with $400^{\circ}C$ and 250 bar. Generally, the extraction yield of aglycons increased over 10 times using supercritical $CO_2$ than sub/supercritical $H_2O$.

Direct Numerical Simulation of Turbulent Heat Transfer to Fluids at Supercritical Pressure Flowing in Vertical Tubes (직접수치모사를 이용한 수직원형관내 초임계압 유체의 난류 열전달 특성 연구)

  • Bae, Joong-Hun;Yoo, Jung-Yul;Choi, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1302-1314
    • /
    • 2004
  • Turbulent heat transfer to $CO_2$ at supercritical pressure flowing in vertical tubes is investigated using direct numerical simulation (DNS). A conservative space-time discretization scheme for variable-density flows at low Mach numbers is adopted in the present study to treat steep variations of fluid properties at supercritical pressure just above the thermodynamic critical point. The fluid properties at these conditions are obtained using PROPATH and used in the form of tables in the simulations. The buoyancy influence induced by strong variation of density across the pseudo-critical temperature proved to play a major role in turbulent heat transfer at supercritical state. Depending on the degree of buoyancy influence, turbulent heat transfer may be enhanced or significantly deteriorated, resulting in local hot spots along the heated surface. Based on the results of the present DNS combined with theoretical considerations, the physical mechanism of this local heat transfer deterioration is elucidated.

Decrosslinking of Cross-linked Polyethylene using Supercritical Methanol (초임계 메탄올을 이용한 가교 폴리에틸렌의 탈가교화)

  • Hong, Soon Man;Cho, Hang-kyu;Koo, Chong Min;Lee, Jang Hoon;Park, Wan Yong;Lee, Hong-Shik;Lee, Youn-Woo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • We investigated the recycling method to re-plasticize cross-linked polyethylene by using supercritical methanol. The cross-linked polyethylene is successfully fragmented to thermoplasticized polyethylene with little degradation reactions in supercritical fluids. The thermo-plasticization reaction was accelerated with increase in temperature in the range from $360^{\circ}C$ to $400^{\circ}C$, resulting in decrease in crosslinking density, molecular weight and mechanical properties. However, the thermoplasticized polyethylene at $360^{\circ}C$ showed comparable tensile strength and impact strength with a raw resin of crosslinked polyethylene. Chemical structure of main chain of polyethylene was not affected by reaction condition.

Performance Comparison of Supercritical Heat Pump for a Variety of Refrigerants (다양한 냉매를 적용한 초임계 히트펌프의 성능 비교)

  • Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan;Jeon, Min-Ju
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.42-47
    • /
    • 2014
  • In this paper, the cycle performance analysis for the COP of supercritical heat pump using various refrigerants is presented to offer the basic design data for the operating parameters of the system. The working fluids are R134a, R22, R32, R290, R600, R600a, R1270 and R744. The operating parameters considered in this study include superheating degree of evaporator, temperature of gas cooler inlet and outlet, compressor efficiency and evaporating temperature in the supercritical heat pump system. The main results were summarized as follows : Superheating degree, temperature of gas cooler inlet and outlet, compressor efficiency and evaporating temperature of supercritical heat pump system have an effect on the COP of this system. With a thorough grasp of these effect, it is necessary to design the supercritical heat pump using R134a. And, in comparison of COP of supercritical heat pump using various refrigerants, R32 and R600 is the highest, and R744 is the lowest among other refrigerants. From these results, it is confirmed that the COP of supercritical heat pump using R744 is higher than that using freon refrigerants such as R32 and R134a.

Application of Separation Technology and Supercritical Fluids Process (초임계유체 공정과 분리기술의 응용)

  • Yoon, Soon-Do;Byun, Hun-Soo
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.123-143
    • /
    • 2012
  • Supercritical fluid technology (SFT) is recently one of the most new techniques, which has been interested various fields of related chemical industries. SFT is the most effective and practical technology with eco-friendly, energy-savings, and high efficiency as the technique using the advantages of supercritical fluid such as high solvation power, solubility, mass transfer rate, and diffusion rate. Especially, it is necessary to analyze, evaluate, and develop the potential of application techniques using SFT with these characterizations. Therefore in this review, the phase behavior in supercritical fluid at high temperature and pressure of monomers/polymers for the optimization of polymerization process are briefly described, and the preparation of molecularly imprinted polymers (MIPs) in supercritical fluid using supercritical polymerization and the performance evaluation of MIPs are introduced.

Analysis for Local Structure of Gaseous Hydrogen/liquid Oxygen Flame at Supercritical Pressures (초임계 압력상태에서 기체수소/액체산소 국소화염구조 해석)

  • Kim, Tae-Hoon;Kim, Seong-Ku;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.182-188
    • /
    • 2010
  • Significant real fluid behaviors including rapid property changes take place where high pressure combustion devices such as rocket engines. The flamelet model is the reliable approach to account for the real fluid effects. In the present study, the flamelet equations are extended to treat the general fluids over transcritical and supercritical states. The real fluid flamelet model is carried out for the gaseous hydrogen and cryogenic liquid oxygen flames at the wide range of thermodynamic conditions. Based on numerical results, the precise discussions are made for effects of real fluid, pressure, and differential diffusion on the local flame structure.

Preparation of Poly(N-vinyl-2-pyrrolidone) Microparticles Using Supercritical Anti-solvent (초임계 반용매법을 이용한 폴리비닐피롤리돈 미세입자의 제조)

  • Shin, Moon-Sam;Kim, Hwa-Yong
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.242-247
    • /
    • 2008
  • Poly(N-vinyl-2-pyrrolidone) (PVP) has been used as biocompatible and biodegradable polymer in cosmetics, pharmaceuticals and electronics. Micro-particles of PVP were produced using an aerosol solvent extraction system (ASES). Dichloromethane (DCM) and supercritical carbon dioxide were used as solvent and antisolvent, respectively. The mean diameter of the obtained polymer particles ranged from 0.184 to $0.249\;{\mu}m$. The relationship between particle size and initial drop size was also considered.

  • PDF