• Title/Summary/Keyword: Supercritical Fluids

Search Result 67, Processing Time 0.024 seconds

Letters on Innoxious Treatment of Recalcitrant Nobiodegrable PCB Using Supercritical Method(1) (초임계법을 이용한 난분해성 유해물질인 폴리염화비폐닐(PCB)의 무해화 처리에 관한 총설(1))

  • 김정성;박윤열;김성윤
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.523-529
    • /
    • 2000
  • Attempts have been made to use Supercritical fluids for industrial purpose in a variety of fields and some of them, are already in practice. However, basic chemical properties of supercritical fluids have not been understood well. The present pater presents the results of physicochemical studies on Supercritical fluids as well as the application of supercritical fluids to industry. The detail is as follows PCB and organic compounds.

  • PDF

Application of Supercritical Fluid in Energetic Materials Processes (화약제조 공정의 초임계 유체 응용)

  • Song, Eun-Seok;Kim, Hwa-Yong;Kim, Hyoun-Soo;Lee, Youn-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.77-87
    • /
    • 2006
  • Micro- or nano-size particles are required to improve the combustion efficiency and stability in the case of solid explosives and propellants. The micro-structural properties of an energetic material strongly influence the combustion and explosion behavior. However, the traditional size reduction techniques, including milling, are not suitable for production of ultra-fine size particles. As an alternative to the traditional techniques, various re-crystallization processes based on supercritical fluids have recently been proposed. Supercritical fluids are fluids at temperatures and pressures above their critical point. In principle, they do not give problems of solvent contamination as they are completely released from the solute when the decompression occurs. Rapid Expansion Supercritical Solutions(RESS) and Supercritical Anti-Solvent Process(GAS/SAS) are representatives of a nano-size particle formation process of energetic materials using supercritical fluids. In this work, various fine particle formation processes using supercritical fluids are discussed and the results are presented.

Manufacturing Polymer/clay Nanocomposites Using a Supercritical Fluid Process

  • Jung, Hyun-Taek;Yoon, Ho-Gyu;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.63-65
    • /
    • 2008
  • The increased interest in reducing the environmental effects caused by releasing organic compounds and aqueous waste has motivated the development of polymeric materials in supercritical fluids. Recently, supercritical fluids have been used in material synthesis and processing because of their special properties, such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive because it is non-toxic, non-flammable, and has moderate critical temperature and critical pressure values. Supercritical carbon dioxide can also swell most polymers. In this study, we prepared polymer/clay nanocomposites using supercritical fluids. Cloisites 10A, 15A, 25A, and 30B used in this study are montmorillonites modified with a quaternary ammonium salt. The nanocomposites of polymer/clay were characterized by X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry.

Antimicrobial Activity and Mechanism of Supercritical Fluids (초임계 유체의 미생물 불활성화 특성 및 기작)

  • Mun, Sungmin;Kim, Jungchan;Lee, Youn-Woo;Yoon, Jeyong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.453-460
    • /
    • 2011
  • Recently, there is growing interests in the application of supercritical fluids for food and medical fields since supercritical fluids ($CO_2$ and $N_2O$) have known to be safe and effective as a non-thermal sterilization technique. Although supercritical fluids have been investigated for various kinds of products, they have not yet been used in common currency due to their lack of knowledge related to the antimicrobial activity or detailed mechanisms. In this review paper, we summarized the characteristics, antimicrobial activity and mechanisms, important factors, and applicability of supercritical fluids to help the investigation and commercialization of supercritical fluids sterilization technique.

ASSESSMENT OF STABILITY MAPS FOR HEATED CHANNELS WITH SUPERCRITICAL FLUIDS VERSUS THE PREDICTIONS OF A SYSTEM CODE

  • Ambrosini, Walter;Sharabi, Medhat Beshir
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.627-636
    • /
    • 2007
  • The present work is aimed at further discussing the effectiveness of dimensionless parameters recently proposed for the analysis of flow stability in heated channels with supercritical fluids. In this purpose, after presenting the main motivations for the introduction of these parameters in place of previously proposed ones, additional information on the theoretical bases and on the consequences of this development is provided. Stability maps, generated by an in-house program adapted from a previous application to boiling channels, are also shown for different combinations of the operating parameters. The maps are obtained as contour plots of an amplification parameter obtained from numerical discretization and subsequent linearization of governing equations; as such, they provide a quantitatively clear perspective of the effect of different boundary conditions on the stability of heated channels with supercritical fluids. In order to assess the validity of the assumptions at the basis of the in-house model, supporting calculations have been performed making use of the RELAP5/MOD3.3 computer code, detecting the values of the dimensionless parameters at the threshold for the occurrence of instability for a heated channel representative of SCWR proposed core configurations. The obtained results show reasonable agreement with the maps, supporting the applicability of the proposed scaling parameters for describing the dynamic behaviour of heated channels with supercritical fluids.

A Study of Separation of γ-linolenic acid with Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 감마 리놀렌산의 분리에 대한 연구)

  • Cho, In-Ho;Sang, Hie-Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 2007
  • In different approaches were extracted from evening primrose seed by supercritical fluids carbon dioxide and for comparison with hexane as solvent. The extracts have been analyzed qualitatively and quantitatively to evaluate yield and selectivity of ${\gamma}$-linolenic acid. The yields extracts with supercritical fluids carbon dioxide were higher than those with hexane. When this process produces commercially, will get a many economic profit.

  • PDF

Lattice-Fluid Description of Phase Equilibria in Supercritical Fluids (격자유체이론을 이용한 초임계유체내에서의 상평형)

  • Kim, Ki-Chang
    • Journal of Industrial Technology
    • /
    • v.11
    • /
    • pp.3-16
    • /
    • 1991
  • The lattice-fluid theory are adopted for modeling the phese equilibria in supercritical fluids, In order to investigate effects of the nonrandom distribution of holes in mixtures on the phase equilibria, the equation of state and the chemical potential of the binary miture are formulated with taking into account nonrandomness of holes distributions in the fluid mixture. The relations of phase equilibria formulated in this work are tested through predictions of solubility of heavy solids in supercritical fluids and predictions of high pressure phase equilibria of binary mixtures. Results obtained exhibit that the lattice fluid model with assumptions of nonrandomness of hole distributions is successful in quantatively mideling the phase equilibria of mixtures of molecules of dissimilar sizes, specifically solids-supercritical fluid mixtures.

  • PDF

Supercritical Fluids and Preparation of Porous Materials (초임계 유체 및 다공성 소재 제조 기술)

  • Lee, Jun-Young;An, Joon-Hyun;Kim, Jung-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.169-179
    • /
    • 2005
  • Porous materials are useful in a wide range of applications including bio/electronic products. The preparation and processing of these materials are mainly progressed by using an organic solvent, which gives rise to air pollution by its emissions. Alternatively, supercritical fluids are well suited to the production of functional porous materials due to a number of specific physical, chemical, and toxicological advantages. In this review, we will introduce the preparation and processing techniques for the formation of the nano/macro pore structure and their morphology, which can be controled by using supercritical fluids.

Numerical analysis of Poiseuille-Rayleigh-Bénard convection in supercritical carbon dioxide

  • Wang, Zhipeng;Xu, Hong;Chen, Chong;Hong, Gang;Song, Zhenguo;Zhang, Yaoli
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3540-3550
    • /
    • 2022
  • The supercritical carbon dioxide (S-CO2) Brayton cycle is an important energy conversion technology for the fourth generation of nuclear energy. Since the printed circuit heat exchanger (PCHE) used in the S-CO2 Brayton cycle has narrow channels, Rayleigh-Bénard (RB) convection is likely to exist in the tiny channels. However, there are very few studies on RB convection in supercritical fluids. Current research on RB convection mainly focuses on conventional fluids such as water and air that meet the Boussinesq assumption. It is necessary to study non-Boussinesq fluids. PRB convection refers to RB convection that is affected by horizontal incoming flow. In this paper, the computational fluid dynamics simulation method is used to study the PRB convection phenomenon of non-Boussinesq fluid-supercritical carbon dioxide. The result shows that the inlet Reynolds number (Re) of the horizontal incoming flow significantly affects the PRB convection. When the inlet Re remains unchanged, with the increase of Rayleigh number (Ra), the steady-state convective pattern of the fluid layer is shown in order: horizontal flow, local traveling wave, traveling wave convection. If Ra remains unchanged, as the inlet Re increases, three convection patterns of traveling wave convection, local traveling wave, and horizontal flow will appear in sequence. To characterize the relationship between traveling wave convection and horizontal incoming flow, this paper proposes the relationship between critical Reynolds number and relative Rayleigh number (r).

Numerical Comparison of Thermalhydraulic Aspects of Supercritical Carbon Dioxide and Subcritical Water-Based Natural Circulation Loop

  • Sarkar, Milan Krishna Singha;Basu, Dipankar Narayan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.103-112
    • /
    • 2017
  • Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.