• Title/Summary/Keyword: Superconducting property

Search Result 123, Processing Time 0.024 seconds

Transport Property of Externally Reinforced Bi-2223 Superconducting Tape under Axial Fatigue Loading

  • Shin, Hyung-Seop;John-Ryan C. Dizon;Kim, Ki-Hyun;Oh, Sang-Soo;Ha, Dong-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.22-26
    • /
    • 2004
  • For practical applications, the evaluation of reliability or endurance of HTS conductors is necessary. The mechanical properties and the critical current, Ie, of multifilamentary Bi-2223 superconducting tapes, externally reinforced with stainless steel foils, subjected to high cycle fatigue loading in the longitudinal direction were investigated at 77K. The S-N curves were obtained and its transport property was evaluated with the increase of repeated cycles at different stress amplitudes. The effect of the stress ratio, R, on the Ie degradation behavior under fatigue loading was also examined considering the practical application situation of HTS tapes. Microstructure observation was conducted in order to understand the Ie degradation mechanism in fatigued Bi-2223 tapes.

A Superconducting $Y_1Ba_2Cu_3O_{7-\delta}$ Square Spiral Microstrip Antenna

  • Jung, Sung-H.;Song, Ki-Y.
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.51-55
    • /
    • 2000
  • A $Y_1Ba_2Cu_3O_{7-\delta}$ square spiral microstrip antenna (YBCO antenna) was epitaxially grown on a $LaAlO_3$ substrate by laser ablation. Also fabricated was a gold square spiral microstrip antenna (gold antenna) having the same structure as that of the YBCO antenna in order to compare the properties of both antennas. Both the YBCO antenna and the gold antenna were operated in Ku (12-18 GHz) band, and their properties such as the return loss, SWR, power gain, and radiation patterns were investigated at 77 K. The return loss below -10 dB was obtained in two frequency ranges, i.e., 14.05-14.90 GHz, and 16-18 GHz for the YBCO antenna at 77 K (YBCO superconducting antenna), and in the frequency range of 15.05-17.60 GHz for the gold antenna at 77 K. The SWR bandwidths are 0.85 GHz and 2 GHz for the YBCO superconducting antenna, and 2.55 GHz for the gold antenna at 77 K. The gain improvement of the superconducting YBCO antenna over the gold antenna at 77 K was about 10 dB in the frequency range of 16 GHz to 18 GHz. The radiation patterns show the YBCO superconducting antenna has the omni-directional property of a spiral antenna.

  • PDF

Fabrication and superconducting property of $MgB_2$ tape with Al metal powder addition

  • Ko, Jae-Woong;Yoo, Jai-Moo;Chung, Kuk-Chae;Kim, Young-Kuk;Wang, Xiaolin;Dou, Shi Xue;Yoo, Sang-Im;Chung, Woo-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.2
    • /
    • pp.15-18
    • /
    • 2007
  • The sub micron sized spherical $MgB_2$ powders were synthesized by spray reaction method. $MgB_2$ tapes with Al addition were fabricated by Powder in Tube (PIT) method. The superconducting property and microstructure of Al doped $MgB_2$ tapes were characterized by X-ray diffraction, optical microscopy and transport measurement under magnetic field. The $J_c$ value of $MgB_2$ tapes was increased with 10 vol. % Al addition. The $J_c$ value of 5,500 A/$cm^2$ and 11,000 A/$cm^2$ at 4.2 K and 5 T were obtained for the $MgB_2$ tape and 10 vol. % of Al added $MgB_2$ tape without heat treatment, respectively. The $J_c$ value of 8,000 A/$cm^2$ and 33,000 A/$cm^2$ at 4.2 K and 5 T were obtained for the $MgB_2$ tape and 10 vol. % of Al added $MgB_2$ tape with heat treatment, respectively. The $J_c$-B curves show enhancement in $J_c$ (B), which suggests that the microstructure and transport properties of $MgB_2$ tapes have been improved with Al addition.

Mechanism of the Voltage Occurrence in BSCCO Superconductor for Neutron Irradiation

  • Lee, Sang-Heon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1093-1094
    • /
    • 2006
  • Magnetic characteristics observed in BiSrCaCuO superconductor were studied. In the measurement of differential conductance, it was cleared that the mechanism of magnetic memory effect couldn't be explained by using conventional flux flow model. By changing the density of external magnetic flux, changes in inductance of a coil in which a superconducting bar inserted were also measured. The results showed that the filament model was valid to explain the mechanism of the occurrence of a voltage in superconducting sample. It was concluded that the electromagnetic characteristics arose from the interaction between the trapped magnetic flux and weak link of the filament formed in the superconducting bulk.

  • PDF

The effect of heat treatment mass flow on superconducting property of Bi-2223/Ag Tapes. (열처리 가스유량에 따른 Bi-2223/Ag 초전도 테이프의 특성에 미치는 영향)

  • 양주생;하동우;이동훈;최정규;황선역;오상수;김상철;김명호
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.96-98
    • /
    • 2003
  • Many of research efforts have been focused on the improvement of critical current density Jc of silver-sheathed Bi-2223 tapes for practical applications of material. Bi-2223 superconducting wires with 55 filaments were fabricated by stacking, drawing process with different heat-treatment histories. After rolling process, Bi-2223 tapes were heat-treatment at 780~826$^{\circ}C$ with variable mass flow rate of mixed gas. In this study, the effect of changes in the variable mass flow rate of mixed gas during the heat treatment of Bi-2223/Ag tapes has been investigated. Distinct differences were observed in the Bi-2223 phase and critical current as flow rate of mixed gas. We could achieve proper conditions of mass flow rate of mixed gas for Ag-alloy clad Bi-2223 superconducting tapes.

  • PDF

A Study on the Electrical Strength of Insulating Materials for High-Tc Superconducting Devices

  • Bae, Duck Kweon;Kim, Chung-Hyeok;Pak, Min-Sun;Oh, Yong-Cheul;Kim, Jin-Sa;Shin, Cheol-Gee;Lee, Joon-Ung;Song, Min-Jong;Choi, Woon-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.294-300
    • /
    • 2005
  • According to the trend for electric power equipment of high capacity and reduction of its size, the needs for the new high performance electric equipments become more and more important. On of the possible solution is high temperature superconducting (HTS) power application. Following the successful development of practical HTS wires, there have been renewed activities in developing superconducting power equipment. HTS equipments have to be operated in a coolant such as liquid nitrogen ($LN_2$) or cooled by conduction-cooling method such as using Gifford-McMahon (G-M) cryocooler to maintain the temperature below critical level. In this paper, the dielectric strength of some insulating materials, such as unfilled epoxy, filled epoxy, and polyimide in $LN_2$ was analyzed. Epoxy is a good insulating material but fragile at cryogenic temperature. The filled epoxy composite not only compensates for this fragile property but enhances its dielectric strength.