Influence of Ag addition on Superconducting Property of Carbon-doped MgB₂ Superconductor

H. J. Kim ^a, C. J. Kim^b, H. W. Park^{*a}

^aKorea University of Technology and Education, Cheonan, Korea

^bKorea Atomic Energy Research Institute, Daejeon, Korea

In this work, either MgB₂ or Mg (B_{1-x}C_{x)} 2 superconductor were synthesized. By solid-state reactions occurring during heat treatments at 900 — after high energy milling of pure Mg and B with up to 5 wt% Ag powder addition. The effects of Ag addition were correlated with the superconducting properties. The critical temperature (T_c) was reduced with Ag addition. The critical current density (J_c) was also decreased an Ag was added to MgB₂ superconductors. XRD patterns indicated that the reaction compound of Mg-Ag was increased at amount of Ag increased. The Jc reduction of MgB₂ superconductor with Ag addition may be caused by the reaction compound of Mg-Ag.

Keywords: MgB₂, Mg-Ag, Critical current density