• Title/Summary/Keyword: Superconducting magnet

Search Result 420, Processing Time 0.025 seconds

Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

  • In, Sehwan;Hong, Yong-Ju;Yeom, Hankil;Ko, Junseok;Kim, Hyobong;Park, Seong-Je
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.59-63
    • /
    • 2016
  • The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

A simulation-based design study of superconducting zonal shim coil for a 9.4 T whole-body MRI magnet

  • Kim, Geonyoung;Choi, Kibum;Park, Jeonghwan;Bong, Uijong;Bang, Jeseok;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.12-16
    • /
    • 2020
  • As high homogeneity in magnetic field is required to increase the resolution of MRI magnets, various shimming methods have been researched. Using one of them, the design of the superconducting active zonal shim coil for MRI magnets is discussed in this paper. The magnetic field of the MRI magnet is expressed as the sum of spherical harmonic terms, and the optimized current density of shim coils capable of removing higher-order terms is calculated by the Tikhonov regularization method. To investigate all potential designs derived from calculated current density, 4 sweeping parameters are selected: (1) axial length of shim coil zone; (2) radius of shim coils; (3) exact axial position of shim coils; and (4) operating current. After adequate designs are determined with constraints of critical current margin and homogeneity criterion, the total wire length required for each is calculated and the design with a minimum of them is chosen. Using the superconducting wire length of 9.77 km, the field homogeneity over 50 cm DSV is improved from 24 ppm to 1.87 ppm in the case study for 9.4 T whole-body MRI shimming. Finally, the results are compared with the finite element method (FEM) simulation results to validate the feasibility and accuracy of the design.

Analysis of the Magnetic Field Distribution and the Current Characteristics of Rotating Type Low Tc Superconducting Power Supply (회전자속형 초전도 전원장치의 박막상에서의 2차원 자장분포 및 전류 특성 해석)

  • Sim, Ki-Deok;Kim, Ho-Min;Yoon, Yong-Soo;Chu, Yong;Han, Tae-Su;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.343-345
    • /
    • 1998
  • By computer simulation, the pattern of magnetic field distribution on the Nb-foil of a rotating flux type superconducting power supply has been calculated. Using the results, the current pumping rate has been calculated and compared with the results obtained by the experiment. The experiment has been executed with small-size flux-rump in the environment of LN2 and LHe in order to compare the pattern of magnetic filed in the superconducting state and in the normal state. Five hall-sensor was located on the center, right side, left-side, upper side, lower side of the Nb-foil in order to obtain more accurate pattern of the magnetic field generated by rotating pole. In the simulation, the effects of the excitation-magnet and the iron core located at the inner-side and circumference of the magnet have been considered. By comparing the data from the experiment and the results from the simulation, the size of normal spot estimated. At the same time, by calculating the linkage flux, the current-pumping-rate has been obtained. Consequently, the results obtained from experiment and simulation coincided as expected.

  • PDF

DC V-I Characteristics of a High Temperature Superconductor for a 600 kJ Superconducting Magnetic Energy Storage Device in an Oblique External Magnetic Field (경사 외부자장에 대한 600 kJ급 SMES용 HTS도체의 DC V-I 특성)

  • Li, Zhu-Yong;Ma, Yong-Hu;Ryu, Kyung-Woo;Choi, Se-Yong;Kim, Hae-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • We are developing a small-sized high temperature superconducting magnetic energy storage (HTS-SMES) magnet with the nominal storage capacity of 600 kJ, which provides electric power with high quality to sensitive electric loads. Critical current and N-value of a high temperature superconductor with large current, which was selected for the development of the 600 kJ HTS-SMES magnet, were investigated in various oblique external magnetic fields. Based on the critical current and N-value measured for the short sample conductor, we discussed the DC V - I characteristic of a model coil fabricated with the same conductor of 500 m. The results show that the measured critical current and N-value of the conductor for parallel field are constant in external magnetic fields less than about 0.2 T. However, for oblique fields, its critical current and N -value abruptly decrease in all external magnetic fields. Moreover, the measured critical current of the model coil well agrees with the numerically calculated one based on the DC V - I characteristic measured for the short sample conductor. This suggest that losses and critical currents for an HTS-SMES magnet made up of a high temperature superconductor with anisotropic characteristic are predictable from the data of a short sample conductor.

A Joining Method between HTS Double Pancake Coils (고온초전도 더블 팬케이크 코일들 사이의 접합 방법)

  • Sohn, Myung-Hwan;Sim, Ki-Deok;Kim, Seok-Ho;Kim, Hae-Jong;Bae, Joon-Han;Lee, Eon-Young;Min, Chi-Hyun;Seong, Ki-Chul
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.633-639
    • /
    • 2006
  • High temperature superconductor (HTS) winding coil is one of the key component in superconducting device fabrication. Double-pancake style coils are widely used for such application. High resistance between pancake coils greatly affects the machine design, operating condition and thus the stability. In order to reduce such resistance, experimentalists are looking for efficient and damage free coil connecting methods. In this respect, here we proposed parallel joining method to connect the coils. This is to do crossly joining with HTS tapes on two parallel HTS tapes. Joint samples between two parallel HTS tapes were prepared by using HTS tapes and current-voltage (I-V) characteristic curves were investigated at liquid nitrogen temperature i.e., 77.3 K. A 20 cm length joint connected between two parallel HTS tapes shows $32.5n{\Omega}$, for currents up to 250 A. A small HTS magnet, having two double pancake sub-coils connected together through new parallel joint method was fabricated and their current-voltage (I-V) characteristic curve was investigated. At 77.3K, critical current(Ic) of 97 A and resistance of $55n{\Omega}$ for currents upto 130 A were measured. At operating current 86 A lower than Ic, Joule heats generated in whole magnet and at joint region between sub-coils were 226 mW and 0.4 mW, respectively. Low Joule heat generation suggests that this joining method may be used to fabricate HTS magnet or windings.

Study on quench detection of the KSTAR CS coil with CDA+MIK compensation of inductive voltages

  • An, Seok Chan;Kim, Jinsub;Ko, Tae Kuk;Chu, Yong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.55-58
    • /
    • 2016
  • Quench Detection System (QDS) is essential to guarantee the stable operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) Poloidal Field (PF) magnet system because the stored energy in the magnet system is very large. For the fast response, voltage-based QDS has been used. Co-wound voltage sensors and balanced bridge circuits were applied to eliminate the inductive voltages generated during the plasma operation. However, as the inductive voltages are hundreds times higher than the quench detection voltage during the pulse-current operation, Central Difference Averaging (CDA) and MIK, where I and K stand for mutual coupling indexes of different circuits, which is an active cancellation of mutually generated voltages have been suggested and studied. In this paper, the CDA and MIK technique were applied to the KSTAR magnet for PF magnet quench detection. The calculated inductive voltages from the MIK and measured voltages from the CDA circuits were compared to eliminate the inductive voltages at result signals.

Design of Field Coil for High Temperature Superconducting motor considering Operating Current (운전전류를 고려한 고온초전도 모터용 계자코일의 설계)

  • 조영식;서무교;백승규;김석환;손명환;권영길;홍정표
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.315-317
    • /
    • 2002
  • The value of I$_{c}$(critical current) in HTS (High Temperature Superconducting) tape has a great influence on B(equation omitted) (magnetic field amplitude applied perpendicular to the tape surface). Therefore, I$_{c}$ of HTS magnet is determined by not only operating temperature but also the B(equation omitted). In shape design of field coil for the HTS motor, a method to reduce the B(equation omitted) and to determine operating current should be considered in order to optimal design. On the basis of the magnetic field analysis, this paper deals with various field coil shape to obtain operating current of HTS motor by using analytical method. And also this paper discusses the operating current of 100hp class HTS motor by using I$_{c}$-B(equation omitted) curve.curve.

  • PDF

Evaluation of mechanical properties of Bi-2223/Ag HTS tapes (Bi-2223/Ag 고온초전도 선재의 기계적 특성 평가)

  • 하홍수;이동훈;양주생;최정규;윤진국;하동우;오상수;권영길
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.351-354
    • /
    • 2002
  • In most of electrical applications using Bi-2223/Ag HTS tapes, bending and tension stresses are essentially applied to the tape. Therefore, the critical current of the Bi-2223/Ag tape is degraded by increasing the deformation stress, though brittle superconducting filaments are embedded in the reinforced Ag alloy sheath. It is needed to understand bending and tension properties of HTS tapes at room temperature and cryogen to make superconducting magnet, cable and etc. using Bi-2223/Ag HTS tapes. Actually, bending and tension stress applied to the tapes simultaneously, when winding the tapes on former for applications. In this study, the effect of mechanical deformations, bending and tension, on the critical current of Bi-2223/Ag tape was investigated.

  • PDF

A Hybrid Energy Storage System Using a Superconducting Magnet and a Secondary Battery

  • ISE Toshifumi;YOSHIDA Takeshi;KUMAGAI Sadatoshi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.534-538
    • /
    • 2001
  • Energy storage devices with high energy density as well as high power density are expected to be developed from the point of view of compensation of fluctuating load and generated power by distributed generations such as wind turbines, photovoltaic cells and so on. SMES (Superconducting Magnetic Energy Storage) has higher power density than other energy storage methods, and secondary batteries have higher energy density than SMES. The hybrid energy storage device using SMES and secondary batteries is proposed as the energy storage method with higher power and energy density, the sharing method of power reference value for each storage device, simulation and experimental results are presented.

  • PDF

Design of an High Temperature Superconducting Magnet for a 5 MJ SMES (5 MJ SMES용 고온초전도 마그넷 설계)

  • Lee, Se-Yeon;Kim, Yung-Il;Park, Sang-Ho;Lee, Ji-Kwang;Bae, Joon-Han;Seong, Ki-Chul;Choi, Kyeong-Dal;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.894-895
    • /
    • 2011
  • 본 논문은 5 MJ의 저장용량을 가지는 초전도 에너지 저장장치용(Superconducting Magnetic Energy Storage System, SMES) 마그넷의 설계에 관한 연구 결과이다. 마그넷의 설계에 사용된 초전도 선재는 2세대 고온초전도 선재인 YBCO CC이고, 초전도 선재의 냉각방식은 냉동기를 이용한 전도냉각으로 마그넷의 운전온도는 14 K 이다. SMES용 마그넷은 테이프형태를 가지고 있는 초전도 선재의 형태를 고려하여 팬케이크 코일로 권선된 모듈코일을 이용하여 토로이드 형태의 마그넷 구조로 설계되었다. 설계를 통해 마그넷의 저장에너지와 초전도 선재의 사용량, 자속밀도 분포 등을 확인하였다.

  • PDF