• 제목/요약/키워드: Superconducting Thin Film

검색결과 239건 처리시간 0.029초

$MgB_2$ Thin Films on SiC Buffer Layers with Enhanced Critical Current Density at High Magnetic Fields

  • Putri, W.B.K.;Tran, D.H.;Kang, B.;Lee, N.H.;Kang, W.N.
    • Progress in Superconductivity
    • /
    • 제14권1호
    • /
    • pp.30-33
    • /
    • 2012
  • We have grown $MgB_2$ superconducting thin films on the SiC buffer layers by means of hybrid physical-chemical vapor deposition (HPCVD) technique. Prior to that, SiC was first deposited on $Al_2O_3$ substrates at various temperatures from room temperature to $600^{\circ}C$ by using the pulsed laser deposition (PLD) method in a vacuum atmosphere of ${\sim}10^{-6}$ Torr pressure. All samples showed a high transition temperature of ~40 K. The grain boundaries of $MgB_2$ samples with SiC layer are greater in amount, compare to that of the pure $MgB_2$ samples. $MgB_2$ with SiC buffer layer samples show interesting change in the critical current density ($J_c$) values. Generally, at both 5 K and 20 K measurements, at lower magnetic field, all $MgB_2$ films deposited on SiC buffer layers have low $J_c$ values, but when they reach higher magnetic fields of nearly 3.5 Tesla, $J_c$ values are enhanced. $MgB_2$ film with SiC grown at $600^{\circ}C$ has the highest $J_c$ enhancement at higher magnetic fields, while all SiC buffer layer samples exhibit higher $J_c$ values than that of the pure $MgB_2$ films. A change in the grain boundary morphologies of $MgB_2$ films due to SiC buffer layer seems to be responsible for $J_c$ enhancements at high magnetic fields.

MOD-TFA 공정에 의한 YBCO박막제조시 과잉 yttrium첨가 효과에 관한 연구 (Effects of Excess Yttrium Addition on YBCO Thin Films Prepared by TFA-MOD Process)

  • 이승이;송슬아;김병주;박진아;김호진;이희균;홍계원;장석헌;주진호;유재무
    • Progress in Superconductivity
    • /
    • 제7권1호
    • /
    • pp.87-91
    • /
    • 2005
  • [ $YBa_{2}Cu_{3}O_{7-x}$ ] thin films were fabricated on $LaAlO_3$(100) substrate by TFA-MOD process. Yttrium-excess (0, 2.5, 5, 10, 15, 20 $at\%$) coating solution was prepared by adding extra amount of yttrium into a stoichiometric(Y:Ba:Cu=1:2:3) TFA precursor solution. Results are presented concerning the influence of excess yttrium additions on the microstructure development and superconducting properties of $YBa_{2}Cu_{3}O_{7-x}$ film. Large sized CuO particles was observed by SEM EDS investigation. The addition of excess yttrium affected little on $T_c$ of $YBa_{2}Cu_{3}O_{7-x}$ film. $J_c$ of YBCO film was enhanced with excess yttrium addition. Jc maximum of $2.21\;MA/cm^2$ (77 K, self field) appeared with the $15\;at\%$ addition of excess yttrium. With further yttrium addition up to $20\;at\%$, Jc decreased down to $0.9\;MA/cm^2$.

  • PDF

과도 사고 시 Au/YBCO 박막 곡선의 저항 거동 (Resistance Development in Au/YBCO Thin Film Meander Lines under High-Power Fault Conditions)

  • 김혜림;심정욱;최인지;임성우;현옥배
    • Progress in Superconductivity
    • /
    • 제8권1호
    • /
    • pp.81-86
    • /
    • 2006
  • We investigated resistance development in $Au/YBa_2Cu_3O_7(YBCO)$ thin film meander lines during high-power faults. The meander lines were fabricated by patterning 300 nm thick YBCO films coated with 200 nm thick gold layers into meander lines. A gold film grown on the back side of the substrate was also patterned into a meander line. The front meander line was connected to a high-power fault-test circuit and the back line to a DC power supply. Resistance of both lines was measured during the fault. They were immersed in liquid nitrogen during the experiment. Behavior of the resistance development prior to quench completion could be understood better by comparing resistance of the front meander lines with that of the back. Quench completion point could be determined clearly. Resistance and temperature at the quench completion point were not affected by applied field strength. The experimental results were analyzed quantitatively with the concept of heat transfer within the meander lines/substrate and to the surrounding liquid nitrogen. In analysis, the fault period was divided into three regions: flux-flow region, region prior to quench completion, and region after quench completion. Resistance was calculated for each region, reflecting the observation for quench completion. The calculated resistance in three regions was joined seamlessly and agreed well with data.

  • PDF

Shape anisotropy and magnetic properties of Co/Ni anti-dot arrays

  • Deshpande, N.G.;Seo, M.S.;Kim, J.M.;Lee, S.J.;Lee, Y.P.;Rhee, J.Y.;Kim, K.W.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.444-444
    • /
    • 2011
  • Recently, patterned magnetic films and elements attract a wide interest due to their technological potentials in ultrahigh-density magnetic recording and spintronic devices. Among those patterned magnetic structures, magnetic anti-dot patterning induces a strong shape anisotropy in the film, which can control the magnetic properties such as coercivity, permeability, magnetization reversal process, and magneto-resistance. While majority of the previous works have been concentrated on anti-dot arrays with a single magnetic layer, there has been little work on multilayered anti-dot arrays. In this work, we report on study of the magnetic properties of bilayered anti-dot system consisting of upper perforated Co layer of 40 nm and lower continuous Ni layer of 5 nm thick, fabricated by photolithography and wet-etching processes. The magnetic hysteresis (M-H) loops were measured with a superconducting-quantum-interference-device (SQUID) magnetometer (Quantum Design: MPMS). For comparison, investigations on continuous Co thin film and single-layer Co anti-dot arrays were also performed. The magnetic-domain configuration has been measured by using a magnetic force microscope (PSIA: XE-100) equipped with magnetic tips (Nanosensors). An external electromagnet was employed while obtaining the MFM images. The MFM images revealed well-defined periodic domain networks which arise owing to the anisotropies such as magnetic uniaxial anisotropy, configurational anisotropy, etc. The inclusion of holes in a uniform magnetic film and the insertion of a uniform thin Ni layer, drastically affected the coercivity as compared with single Co anti-dot array, without severely affecting the saturation magnetization ($M_s$). The observed changes in the magnetic properties are closely related to the patterning that hinders the domain-wall motion as well as to the magneto-anisotropic bilayer structure.

  • PDF

철심과 권선을 이용한 전류제한기에 적용시킨 안정화층이 다른 YBCO Coated Conductor의 전류제한 특성에 관한 연구 (The Study on the Current Limiting Characteristics of YBCO Coated Conductor with Different kinds of Stabilization Layer Applied to SFCL Using Iron Core and Coil)

  • 이동혁;두호익;김용진;한병성;임성우;한상철;이정필
    • 한국전기전자재료학회논문지
    • /
    • 제23권10호
    • /
    • pp.788-792
    • /
    • 2010
  • The yttrium-barium-copper-oxide (YBCO) coated conductor, which supplement the fault of the existing superconducting current-limit materials YBCO thin film, bismuth-strontium-calcium-copper-oxide(BSCCO) wire and bulk, has been improved its mechanical weakness and has high index; hence, after quench YBCO coated conductor could limit the fault current effectively because of fast resistance occurrence speed. Furthermore, it has wide applicable area as an current limit material because it shows different resistance occurrence tendency by the thickness and kind of stabilization material sputtered on the superconducting layer. Therefore, many researchers are carrying out the study of application of YBCO coated conductor to superconducting fault current limiter (SFCL) for making high quality current limit element, based on resistance type. On the other hand, the study for other type except resistance type has been rarely conducted for the application of YBCO coated conductor to SFCL as an current limit element. Consequently, in this study, YBCO coated conductor with different stabilization layer Cu and Stainless steel, is applied to SFCL using iron core and coil, and examine the many index points as an current limit element, such as current limit characteristic, the tendency of resistance occurrence, response time, the temperature trend for stability.

미립액상법을 위한 PECVD 반응로설계 (Reactor design of PECVD system using a liquid aerosol feed method)

  • 정용선;오근호
    • 한국결정성장학회지
    • /
    • 제7권2호
    • /
    • pp.235-243
    • /
    • 1997
  • $YBa_2Cu_3O_x$ 고온 초전도체 상을 MgO 단결정위에 증착시키기 위하여 액상의 에어로 졸 입자를 저온 플라즈마의 화학증기 증착로안에 유입하였다. 플라즈마의 분포를 조절하기 위한 반응로의 설계에 따라 초전도체상의 미세구조가 변화하는 양상을 관찰하였으며, 이때 증착 기판 위에서 관찰되는 입자들의 생성원인에 대하여 고찰하였다. 입자생성의 주된 원인으로는 불안정한 플라즈마의 분포와 출발원료의 낮은 기화속도에 기인하는 것으로 나타났다. 또한 증착속도는 출발원료가 기화되는 곳으로부터 멀어질수록 급격히 감소하는 것으로 밝혀졌다.

  • PDF

적층형 초전도 다심 선재 제조 (Fabrication of coated conductor stacked multi-filamentary wire)

  • 윤기수;하홍수;오상수;문승현;김철진
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권1호
    • /
    • pp.4-7
    • /
    • 2012
  • Coated conductors have been developed to increase piece length and critical current for electric power applications. Otherwise, Many efforts were carried out to reduce AC loss of coated conductor for AC applications. Twisting and cabling processes are effective to reduce AC loss but, these processes can not be applied for tape shaped coated conductor. It is inevitable to have thin rectangular shape because coated conductor is fabricated by thin film deposition process on metal substrate. In this study, round shape superconducting wire was first fabricated using coated conductors. First of all, Ag coated conductor was used. coated conductor was slitted to several wires with narrow width below 1mm. 12ea slitted wires were parallel stacked on top of another until making up the square cross-section. The bundle of coated conductors was heat treated to stick on each other by diffusion bonding and then copper plated to make round shape wire. Critical current of round wire was measured 185A at 77K, self field.

펄스 레이저 증착법에 의한 금속기판상 초전도 박막의 증착 (Growth of superconducting thin film on metallic substrate by pulsed laser deposition)

  • 정영식;이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1298-1300
    • /
    • 1997
  • 금속기판상 초전도 $YBa_2CU_3O_{7-{\delta}}$ (YBCO) 박막을 yttria-stabilized zirconia (YSZ) 완충막을 이용하여 in situ 펄스 레이저 증착법에 의해 증착하였다. YBCO 박막을 직접 금속기판에 증착하게 되면 YBCO 박막과 금속기판 사이의 계면에서 상호확산현상이 발생하기 때문에 이를 방지하기 위해 YSZ 완충막이 사용되었다. YSZ 완충막의 증착온도가 박막의 결정성과 전기적 특성에 미치는 영향을 알아보기 위해 YSZ 완충막은 여러 가지 온도로 증착되었다. YBCO 박막의 증착온도와 같은 온도로 YSZ 완충막을 증착했을 때보다 YBCO 박막의 증착온도보다 높은 온도로 YSZ 완충막을 증착했을 경우, 증착된 YBCO 박막은 x선 회절에 의해 c 축 방향으로 성장하였음을 알 수 있었고, 저항이 0이 되는 임계온도가 83K가 되는 실험 결과를 얻었다.

  • PDF