• 제목/요약/키워드: Superconducting Magnet

검색결과 420건 처리시간 0.038초

이터 초전도자석 전원공급장치 현장 설치현황 및 시운전 계획 (KO AC/DC Converter System Installation Status and Commissioning Plan at ITER Site)

  • 송인호;오종석
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.397-401
    • /
    • 2022
  • The construction of the ITER tokamak machine is ongoing at a 77% process rate to achieve the first plasma in 2025. The 18 sets of power supply systems comprising 400 MVA thyristor AC/DC converters for the superconducting magnets supplied by Korea (KO) are being installed with other systems, such as PF converters (China), DC busbars (Russia), and cooling water systems (India), in two buildings (Europe). The system interfaces have been defined during the design stage, and the systems have been manufactured. However, during the on-site installation work, several installation and integration issues emerged due to the manufacturing tolerance and design mistakes. To continue the installation and testing, the engineers of each system resolved the interface issues, planned the commissioning, and integrated the test plan. This paper describes the on-site installation status and issues and the commissioning plan of KO AC/DC converters.

600kJ 전도냉각 고온초전도 SMES의 전기절연 설계 (The Electrical Insulation Design of 600kJ Conduction Cooled HTS SMES)

  • 최재형;곽동순;천현권;민치현;김해종;성기철;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권3호
    • /
    • pp.67-71
    • /
    • 2007
  • The electrical insulation design of 600 kJ conduction cooled high-Tc superconducting magnetic energy storage (SMES) have been studied in this paper. The high voltage is applied to both ends of magnet of high-Tc SMES by quench or energy discharge. Therefore. the insulation design of the high voltage needs for commercialization. stability. reliability and so on. In this study. we analyzed the insulation composition of a high-Tc SMES. and investigated about the insulation characteristics of the materials such as Kapton. AIN. $Al_2O_3$. GFRP and vacuum in cryogenic temperature. Base on these results. the insulation design for 600 kJ conduction cooled high-Tc SMES was performed.

Characteristic Analysis of HTS EDS System with Various Ground Conductors

  • Bae, Duck-Kweon;Ko, Tae-Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권2호
    • /
    • pp.21-24
    • /
    • 2010
  • This paper deals with numerical analysis on a high-$T_c$ superconducting (HTS) electrodynamic suspension (EDS) simulator according to the variation of the ground conductor conditions. Because the levitation force of EDS system is formed by the magnetic reaction between moving magnets and fixed ground conductors, the distribution of the magnetic flux on a ground conductor plays an important role in the determining of the levitation force level. The possible way to analyze HTS EDS system was implemented with 3D finite element method (FEM) tool. A plate type ground conductor generated stronger levitation force than ring type ground conductor. Although the outer diameter of Ring3 (335 mm) was larger than that of Ring2 (235 mm), the levitation force by Ring2 was stronger than that by Ring3. Considering the results of this paper, it is recommended that the magnetic flux distribution according to the levitation height and magnet current should be taken into account in the design of the ground conductors.

Research and development of new magnetic filter for high gradient magnetic separation

  • Shigehiro Nishijima;Naoki Nomura;Fumihito Mishima
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권3호
    • /
    • pp.1-6
    • /
    • 2023
  • We have been developing a new magnetic filter so that small sized paramagnetic substances can be separated even in a low magnetic field (lower than 2T). The developed filter is a packed ferromagnetic filament with a triangular cross section. The filament has a diameter of 120 ㎛ and a length of 3 mm, and is mechanically packed with a volume ratio of 17.6%. Using this filter, a magnetic separation experiment of hematite was carried out using a superconducting magnet at the field of 2T. Similarly, magnetic separation was performed using a conventional magnetic filter. It became clear that the separation efficiency of newly developed filter is high as that of conventional mesh filter. The smaller sized hematite (<3 ㎛) could be separated though conventional mesh filter could not separate.

자기공명영상진단기(磁氣共鳴影像診斷機)(MRI)의 보유현황(保有現況) 및 이용실태(利用實態)에 관한 조사연구(調査硏究) -부산시내(釜山市內) 3개(個) 병원(病院)을 중심(中心)으로- (A Study on the Status of Installation and Utilization of Magnetic Resonance Imaging in Korea)

  • 김경배;이만재
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제15권2호
    • /
    • pp.37-47
    • /
    • 1992
  • Magnetic Resonance Imaging(MRI) is one of the most expensive and sophisticated diagnostic tool and has been hailed as the most exciting event in medical imaging "since the introduction of X-rays", but a major disadvantage, high cost, is coming into focus especially in our country. To determine the status of distribution of MR imagers in Korea and to serve as a basic material for an efficient utilization of this Imaging machine, a retrospective survey of nationwide and regional(3 hospitals in Pusan) installations was performed. The results were as follows : 1. As of April 30, 1991, a total of 33 MRI units(24 for superconducting, 6 for permanent and 3 for resistive units) were set up and operated. 91% of the units were distributed in big cities with no one installation in 7 provinces among 12 provinces in our country. 85% of the units were imported. 2. Although 42.4% of the units were operated in Seoul, Taejeon had the best condition for the distribution of this imaging machine per population, hospital, and bed in Korea. 3. In Pusan : a) 5 units were operated with all superconducting magnet and medium magnetic field in type of machine. b) 80.1 % of the examinations were central nervous system(CNS). c) MRI examination occupied 1.4% of all radiographic examinations and the patients referred from other hospitals were composed of 23.4%% of all patients. 4. The average days under operating of MRI unit a week in Puasn were higher(5.5) than that of Seoul(4.5), but the average number of examinations and hours a week and a day, respectively(33, 8.4), was less than that of Seoul(57, 12.9). 5. The patients with positive MRI findings in a hospital(B) in Pusan was 74.5% on an average.

  • PDF

전도 냉각형 10kJ 고온 초전도 에너지 저장장치의 열 부하 특성 해석 (Heat load characteristic analysis of conduction cooled 10kJ HTS SMES)

  • 김광민;김아롱;김진근;박해용;박민원;유인근;김석호;심기덕
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.2219_2220
    • /
    • 2009
  • The characteristics of the Superconducting Magnetic Energy Storage (SMES) system are faster response, longer life time, more economical, and environment friendly than other Uninterruptible Power Supply (UPS) using battery. Fast charge and discharge time of SMES system can provide powerful performance of improving power quality in the grid. In order to demonstrate the effectiveness of SMES, the authors make a 10kJ SMES system for connection with RTDS (Real Time Digital Simulator). Because the characteristics of superconducting magnet are very important in SMES system, the necessary items such as thermal characteristic, mechanical stress and protection circuit should be considered. In this paper, the authors experimented thermal characteristics of the 10kJ SMES system. The experiment was accomplished using a simulation coils made of aluminium. It has same dimension of the 10kJ class HTS SMES coil. The coil was cooled with GM (Gifford -McMahon) cryocooler through the OFHC (Oxgen Free High thermal Conductivity) conduction bar. The test results of cool down and heat loads characteristics of the simulation coils are described in detail.

  • PDF

폐수처리 분야에서 자기 분리기술의 응용 현황 및 전망 (Application Status and Prospect of Magnetic Separation Technology for Wastewater Treatment)

  • 저소웅;임봉수;최찬수
    • 한국물환경학회지
    • /
    • 제36권2호
    • /
    • pp.153-163
    • /
    • 2020
  • Magnetic separation technology is an efficient and environmentally friendly technology. Compared with the traditional wastewater treatment technology, the magnetic separation technology has its unique advantages and characteristics, and has been widely applied in the field of wastewater treatment. In particular, the emergence of superconducting magnetic separation technology makes possible for high application potential and value. In this paper, which through consulting with the literatures of Korea, Chinese, United States and other countries, the magnetic separation technology applied to wastewater treatment was mainly divided into direct application of magnetic field, flocculation, adsorption, catalysis and separation coupling technology. Advantages and limitations of the magnetic separation technology in sewage treatment and its future development were also studied. Currently, magnetic separation technology needs to be studied for additional improvement in processing mechanism, design optimization of magnetic carrier and magnetic separator, and overcoming engineering application lag. The selection, optimization and manufacturing of cheap magnetic beads, highly adsorbed and easily desorbed magnetic beads, specific magnetic beads, nanocomposite magnetic beads and the research of magnetic beads recovery technology will be hot application of the magnetic separation technology based on the magnetic carriers in wastewater treatment. In order to further reduce the investment and operation costs and to promote the application of engineering, it is necessary to strengthen the research and development of high field strength using inexpensive and energy-saving magnet materials, specifically through design and development of new high efficiency magnetic separators/filters, magnetic separators and superconducting magnetic separators.

초전도 HGMS 자기분리에 의한 제지폐수의 정수처리 (Purification of Paper Factory's Wastewater by Superconducting HGMS)

  • 하동우;김태형;백승규;오상수;하홍수;고락길;김호섭;김영훈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.41-41
    • /
    • 2008
  • 제지산업은 다량의 용수를 사용하면서 또한 많은 양의 폐수를 배출하고 있다. 기존의 폐수처리 공정에서는 침전처리를 위한 큰 저수조와 오랜 침강 시간이 요구되어 제한된 공장 내에서의 처리에 어려움이 많다. 이러한 기존 기술의 문제점을 보완하면서도 새로운 고도처리가 가능한 초전도 마그네트를 이용한 자기분리 기술을 적용하고자 하였다. 자기문리의 기본 원리는 강력한 자기력에 의하여 액체에 포함된 자성입자를 분리해내는 것으로 자성입자들이 자계의 힘에 의하여 잡아당겨지고 포획됨으로서 제거되는 것이다. 자기분리용 솔레노이드 마그네트로 초전도마그네트를 적용하게 되면 아주 높은 고구배의 자장(HGMS; High Gradient Magnetic Separation) 을 발생시킬 수 있다. 초전도마그네트와 체(sieve) 형 자기필터를 이용하면 대공간에 전력손실 없이 고자장을 발생시킬 수 있기 때문에 미립자를 효과적으로 고속으로 분리하는 것이 가능해지며 또한 상자성 미세입자까지도 처리할 수 있다. 본 연구에서는 주로 유기물로 구성된 제지며|수의 부유물을 자성체와의 응집반응에 의해 플록을 형성하여 자성 플록의 자기분리 효과를 연구하였다. 자성응집반응의 특성을 평가하기 위하여 전자석 시스템을 제작하였으며 배치타입의 자기필터를 설계 제작하였다. 또한 응집제의 종류와 응집반응 공정에 따른 자성플록의 형성 정도를 조사하였으며 자기분리 후 폐수의 탁도, SS 등의 특성을 분석하였다. 그림 1은 자성응집반응의 특성을 평가하기 위하여 제작한 전자석 시스템을 나타내고 있으며 전자석의 자장해석 결과를 보이고 있다.

  • PDF

초전도 자기분리에 의한 제지폐수 처리를 위한 응집반응 연구 (Study on coagulation reaction of paper wastewater for superconducting HGMS)

  • 하동우;김태형;김영훈;하태욱;오상수;송규정;하홍수;고락길;김호섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.298-298
    • /
    • 2008
  • 제지산업은 다량의 용수를 사용하면서 또한 많은 양의 폐수를 배출하고 있다. 기존의 폐수처리 공정에서는 침전처리를 위한 큰 공간과 오랜 시간이 요구되어 처리비용이 비교적 많이 드는 단점이 있다. 이러한 기존 기술의 문제점을 보완할 수 있는 새로운 고도처리가 가능한 초전도 마그네트를 이용한 자기분리 기술을 적용하고자 하였다. 자기분리의 기본 원리는 강력한 자기력에 의하여 액체에 포함된 자성입자를 분리해내는 것으로 자성입자들이 자계의 힘에 의하여 잡아당겨지고 포획될으로서 제거되는 것이다. 자기분리용 전자석으로서는 아주 이상적으로 이러한 초전도마그네트와 체(sieve) 형 자기필터를 결합시키면 아주 높은 고구배의 자장(HGMS; High Gradient Magnetic Separation)을 발생 시킬 수 있다. 초전도마그네트를 이용하면 대공간에 전력손실 없이 고자장을 발생시킬수 있기 때문에 미립자를 효과적으로 고속으로 분리하는 것이 가능해지며 또한 상자성 미세입자까지도 처리할 수 있다. 본 연구에서는 주로 유기물로 구성된 제지며|수의 부유물을 자성체와의 응집반응에 의해 플록을 형성하여 자성플록의 자기분리 효과를 연구하였다. 응집제의 종류와 응집반응 공정에 따른 자성플록의 형성 정도를 조사하였으며 자기분리 후 폐수의 탁도, COD 등의 특성을 분석하였다.

  • PDF

종자 결정 성장법으로 제조된 $GdBa_2Cu_3O_{7-y}$ 벌크 초전도체의 자기적 특성 (Magnetic Properties of $GdBa_2Cu_3O_{7-y}$ Bulk Superconductors Fabricated by a Top-seeded Melt Growth Process)

  • 김광모;박순동;전병혁;고태국;김찬중
    • Progress in Superconductivity
    • /
    • 제14권1호
    • /
    • pp.39-44
    • /
    • 2012
  • The fabrications condition and superconducting properties of top-seeded melt growth (TSMG) processed $GdBa_2Cu_3O_{7-y}$ (Gd123) bulk superconductors were studied. Processing parameters (a maximum temperature ($T_{max}$), a temperature for crystal growth ($T_G$) and a cooling rate ($R_G$) through a peritectic temperature ($T_P$) for the fabrication of single grain Gd123 superconductors were optimized. The magnetic levitation forces, trapped magnetic fields, superconducting transition temperature ($T_c$) and critical current density ($J_c$) of the Gd123 bulks superconductors were estimated. Single grain Gd123 bulk superconductors were successfully fabricated at the optimized processing condition. The $T_c$ of a TSMG processed Gd123 sample was 92.5 K and the $J_c$ at 77 K and 0 T was approximately $50kA/cm^2$. The trapped magnetic field contour and magnetic levitation forces were dependent on the top surface morphology of TSMG processed Gd123 samples. The single grain Gd123 samples, field-cooled at 77 K using a Nd-B-Fe permanent magnet with 5.27 kG and 30 mm dia., showed the trapped magnetic field contour of a single grain with a maximum of 4 kG at the sample center. The maximum magnetic levitation forces of the single grain Gd123 sample, field-cooled or zero field-cooled, were 40 N and 107 N, respectively.