• Title/Summary/Keyword: Superconducting Magnet

Search Result 420, Processing Time 0.023 seconds

Operation result of the Cryogenic and Mechanical Measurement System for KSTAR (KSTAR 저온 및 구조 계측 시스템 운전 결과)

  • Kim, Y.O.;Chu, Y.;Yonekawa, H.;Bang, E.N.;Lee, T.G.;Baek, S.H.;Hong, J.S.;Lee, S.I.;Park, K.R.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.26-30
    • /
    • 2009
  • Korea Superconducting Tokamak Advanced Research(KSTAR) device is composed of 30 superconducting magnets, magnet structure, vacuum vessel, cryostat, current feeder system, and etc. KSTAR device is operated in the cryogenic temperature and high magnetic field. We install about 800 sensors - temperature sensors, stain gages, displacement gages, hall sensors - to monitor the thermal, mechanical, electrical status of KSTAR during operation. As a tremendous numbers of sensors should be installed for monitoring the KSTAR device, the method of effective installation was developed. The sensor test was successfully carried out to check its reliability and its reproduction in the cryogenic temperature. The sensor signal is processed by PXI-based DAQ system and communicated with central control system via machine network and is shown by Operator Interface(OPI) display in the main control room. In order to safely operate the device, any violations of mechanical & superconductive characteristic of the device components were informed to its operation system & operator. If the monitored values exceed the pre-set values, the protective action should be taken against the possible damage. In this paper, the system composition, operation criteria, operation result were presented.

Electrical insulating design of 600kJ conduction cooled HTS SMES

  • Choi, Jae-Hyeong;Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Min, Chi-Hyun;Kim, Hae-Jong;Seong, Ki-Chul;Kim, Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.2
    • /
    • pp.27-30
    • /
    • 2007
  • The electrical insulation design and withstanding test of mini-model coils for 600 kJ class conduction cooled high temperature superconducting magnetic energy storage (HTS SMES) have been studied in this paper. The high voltage is generated to both ends of magnet of HTS SMES by quench or energy discharge. Therefore, the insulation design of the high voltage needs for commercialization, stability, reliability and so on. In this study, we analyzed the insulation composition of a HTS SMES, and investigated about the insulation characteristics of the materials such as Kapton, AIN and vacuum in cryogenic temperature. Base on these results, the insulation design for 600 kJ conduction cooled HTS SMES was performed. The mini-model was manufactured by the insulation design, and the insulation test was carried out using the mini-model.

Construction and Assembly of KSTAR Current Leads and the Helium Control System (KSTAR 전류인입선 및 헬륨냉매 제어시스템 제작 및 설치)

  • Song, N.H.;Woo, I.S.;Lee, Y.J.;Kwag, S.W.;Bang, E.N.;Lee, K.S.;Kim, J.S.;Jang, Y.B.;Park, H.T.;Hong, J.S.;Park, Y.M.;Kim, Y.S.;Choi, C.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.388-396
    • /
    • 2007
  • KSTAR (Korea Superconducting Tokamak Advanced Research) current lead system (CLS) has a role to interconnect magnet power supply (MPS) in room temperature (300 K) and superconducting (SC) bus-line, electrically. For the first plasma experiments, it should be assembled 4 current leads (CL) on toroidal field (TF) current lead box (CLB) and 14 leads on poloidal field (PF) CLB. Two current leads, with the design currents 17.5 kA, and SC bus-lines are connected in parallel to supply 35 kA DC currents on TF magnet. Whereas, it could supply $20\;{\sim}\;26\;kA$ to each pairs of PF magnets during more than 350 s. At the cold terminals of the leads, there are joined SC bus-lines and it was constructed helium coolant control system, aside from main tokamak system, to protect heat flux through current leads and enhanced Joule heat due to supplied currents. Throughout the establishment processes, it was tested the high vacuum pumping, helium leak of the helium lines and hardwares mounted between the helium lines, flow controls for CL, and liquid nitrogen cool-down of possible parts (current leads, CL helium lines, and thermal shield helium lines for CLB), for the accomplishment of the required performances.

Progress in $MgB_2$ Superconductor Wires and Tapes

  • Kim, Jung-Ho;Kumakura, Hiroaki;Rindflesich, Matthew;Dou, Shi Xue;Hwang, Soo-Min;Joo, Jin-Ho
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.75-81
    • /
    • 2011
  • We report on the progress that has been made in developing $MgB_2$ superconducting wires and tapes for commercialization and research efforts. A number of techniques have been developed to overcome the obstacle posed by the poor critical current density ($J_c$) of pristine $MgB_2$. Chemical doping has proved to be the effective way to modify and enhance the superconducting properties, such as the $J_c$ and the irreversibility field ($B_{irr}$). More than 100 different types of dopants have been investigated over the past 8 years. Among these, the most effective dopants have been identified to be SiC and malic acid ($C_4H_6O_5$). The best results, viz. a $B_{irr}$ of 22 T and $J_c$ of $30,000\;A{\cdot}cm^{-2}$ at 4.2 K and 10 T, were reported for malic acid doped $MgB_2$ wires, which matched the benchmark performance of commercial low temperature superconductor wires. In this work, we discuss the progress made in $MgB_2$ conductors over the past few years at the University of Wollongong, Hyper Tech Research, Inc., and Ohio State University.

Comparisons of internal self-field magnetic flux densities between recent Nb3Sn fusion magnet CICC cable designs

  • Kwon, S.P.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.3
    • /
    • pp.10-20
    • /
    • 2016
  • The Cable-In-Conduit-Conductor (CICC) for the ITER tokamak Central Solenoid (CS) has undergone design change since the first prototype conductor sample was tested in 2010. After tests showed that the performance of initial conductor samples degraded rapidly without stabilization, an alternate design with shorter sub-cable twist pitches was tested and discovered to satisfy performance requirements, namely that the minimum current sharing temperature ($T_{cs}$) remained above a given limit under DC bias. With consistent successful performance of ITER CS conductor CICC samples using the alternate design, an attempt is made here to revisit the internal electromagnetic properties of the CICC cable design to identify any correlation with conductor performance. Results of this study suggest that there may be a simple link between the $Nb_3Sn$ CICC internal self-field and its $T_{cs}$ performance. The study also suggests that an optimization process should exist that can further improve the performance of $Nb_3Sn$ based CICC.

A Study on the magnetohydrodynamic propulsion system. (전자 유체(MHD) 추진장치에 관한 연구 (I))

  • Kong, Y.K.;Choi, T.I.;Kong, K.S.;Kim, Y.S.;Noh, G.J.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.69-72
    • /
    • 1991
  • The propulsion of a ship is generally generated by the propeller motion. When we consider the importance of the acoustic noise of a ship, the epochal noiseless magnetohydrodynamic(MHD) propulsion system is studying now because the noise reduction of propeller has it's own limitation. This paper describes the characteristic analysis, theoretical analysis and efficiency versus thrust characteristics of MHD prolulsion system. When we generate 1 Tesla using normal conductor magnet, the efficiency is lower than 10 percent. It is essential to use superconducting magnet in order to increase the useful efficiency up to 50%. The validity of MHD propulsion system can be confirmed by analyzing other countries model test result.

  • PDF

Fabrication of Prototype Persistent Current Switch System Using by BSCCO-2223 Tape (BSCCO-2223 선재를 이용한 Prototype 영구전류스위치 시스템의 제작)

  • 강형구;김정호;이응로;안민철;김호민;윤용수;오상수;주진호;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.72-75
    • /
    • 2001
  • The persistent current mode operation of HTS coils is one of the key technologies required for very high-field MRI magnets composed of LTS and HTS coils. But to date, the fabrication of persistent current mode system using HTS is not investigated well. In this paper, we fabricated the magnet and PCS using by BSCCO-2223 tape and jointed them with solder. The current decay behavior of the circuit was measured in liquid nitrogen by monitoring the magnetic field in the centre of magnet with a Hall sensor. To enhance the characteristic of persistent current mode system, superconducting joint method should be investigated.

  • PDF

Design and manufacture of Bi-2223 HTS current leads for SMES magnet

  • Oh, S.S.;Cho, J.W.;Ha, H.S.;Sim, K.D.;Ha, D.W.;Seong, K.C.;Kwon, Y.K.;Ryu, K.S.;Kim, S.H.;Jang, H.M.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.236-240
    • /
    • 2000
  • Bi-2223 HTS current leads for a superconducting magnetic energy storage(SMES) magnet were designed and manufactured. The HTS leads composed of Bi-2223/AgAu tapes and stainless steel former were connected to conventional vapor-cooled copper leads. The heat input to the liquid helium through the HTS lead was 0.39 W/lead when the warm end part's temperature is 65 K. And, the critical current of the HTS leads was about 1.6 kA when the warm end part's temperature is 80 K. The measured those values are well consistent with computed values.

  • PDF

Magnetic Suspension Effect of BiPbSrCaCuO Superconducting Bulk (BiPbSrCaCuO 초전도 벌크의 Magnetic Suspension)

  • 이상헌
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.545-551
    • /
    • 2004
  • Magnetic suspension effect has been studied by using superconductor of BiPbSrCaCuO ceramics containing Ag$_2$O. Magnetic flux measurements of a toroidal magnet revealed a concave shaped field distribution with a null field along the axis of the torus at the point where the field reversed. The suspension effect was observed only for the Ag$_2$O doped and field cooled sample which is attributed to the enhanced flux pinning due to the field cooled condition. It has been cleared that Ag$_2$O acts as pinning center which plays an important role to the magnetic suspension effect. Magnetic repulsive force which affects a superconductor located in magnetic flux from toroidal magnet has been investigated. It has been concluded that the magnetic suspension effect arises from the interaction between the pinning effect and the diamagnetic effect.

Recovery Current Characteristics of the SC conductor for a $\mu$ SMES ($\mu$ SMES용 초전도도체의 회복전류 특성)

  • Kim, H.J.;Seong, K.C.;Cho, J.W.;Lee, E.Y.;Kwon, Y.K.;Ryu, K.S.;Ryu, K.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.807-809
    • /
    • 2000
  • We are developing a small-sized superconducting magnetic energy storage ($\mu$ SMES) magnet with the storage capacity of a few megajoules, which provides electric power with high quality to sensitive electric loads. As the earlier step of the fabrication of the $\mu$ SMES magnet, this paper describes recovery current experimental results of a kA class superconductor. Recovery current of a superconductor was tested in two points of copper ratio and cooling effect.

  • PDF