• Title/Summary/Keyword: Superconducting Fault Current Limiters

Search Result 116, Processing Time 0.026 seconds

Concept Design of Superconducting Power System with Distributed Switching Station in Downtown Area (대도심 분산형 배전개폐소를 적용한 초전도 전력시스템 개념설계)

  • Lee, Seung-Ryul;Kim, Jong-Yul;Yoon, Jae-Young;Lee, Byong-Jun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.522-528
    • /
    • 2006
  • Korean power system has some problems like as curtailing investment and the NIMBY (Not In My Back Yard) phenomena, because of power demand concentration in downtown area. In this time, superconducting power devices rise as a very attractive solution. This study proposes a basic concept of superconductivity power system with distributed switching station, and identifies the items for technical and economic analysis. The proposed system consists of superconducting cables/ transformers/FCLs(fault current limiters). The basic concept is to replace 154kV conventional cables with 22.9kV superconducting cables and to convert a 154kV substation into 22.9kV distributed switching stations in downtown area.

Fabrication and fault test of 12 kVA class BSCCO SFCL element (12 kVA급 BSCCO 한류소자 제작 및 특성 실험)

  • Oh, S.Y.;Yim, S.W.;Kim, H.R.;Hyun, O.B.;Jang, G.E.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.24-27
    • /
    • 2008
  • For the development of superconducting fault current limiters(SFCLs) having large current capacity, we fabricated an SFCL element that consists of Bi-2212 superconductor and Cu-Ni alloy tubes. First, Ag was plated on the surface of the Bi-2212 for the enhancement of soldering process. On the Ag-plated Bi-2212 tube, a Cu-Ni alloy tube was soldered using optimized solders and soldering conditions. The BSCCO/Cu-Ni composite was processed mechanically to have a helical shape for the improvement of the SFCL characteristics. The total current path of the SFCL element was 1330 mm long with 12 turns, and had critical current of 340 A at 77 K. Finally, we carried out the fault test using the fabricated SFCL element. It showed successful current limiting performance under the fault condition of 50 $V_{rms}$ and 5.5 kA. From the results, the rated voltage of the SFCL element was decided to be 0.4 V/cm, and the power capacity was 12 kVA at 77 K. The fabrication process of the SFCL and the fault test results will be presented.

Electromagnetic Field Distribution of Reactors for Matrix-type SFCLs under Triple Lines-to-Ground Faults (삼선 지락사고 발생시 매트릭스형 한류기용 리액터의 전자장 분포 해석)

  • Chung, Dong-Chul;Han, Tae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.459-463
    • /
    • 2011
  • In this paper we reported the characteristics of 1 line, 2 lines and 3 lines-to-ground fault of matrix-type SFCLs (MFCLs) and the electromagnetic field distribution of reactors for MFCLs under the same cases of ground faults. To do this, we fabricated MFCLs with 6 reactors for 3 phases. Each reactor had the length of 270 mm and diameter of 80 mm. 6 reactors were made by Bakelite. We reported experimental results, including fault currents, fault voltages and magnetic field distribution according to phase differences between each phase. We confirmed that experimental results will be useful in next future plan for real power grid.

Electromagnetic characteristics of superconducting fault current limiters under the quenching (박막형 초전도 한류기의 퀜치상태의 전자기 특성)

  • Choi, H.S.;Chung, H.S.;Choi, C.J.;Lee, S.I.;Chung, S.B.;Oh, K.G.;Lim, S.H.;Han, B.S.;Chung, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.415-417
    • /
    • 2003
  • we analyzed the electromagnetic behavior of a superconducting fault current limiter (SFCL) under the quench state using FEM. The analysis model used in this work is 5.5 KVA meander-line type SFCLs. Meshes of 3,650 triangular elements were used in the analysis of this SFCL. Analysis results showed that the distribution of current density was concentrated to inner curved line in meander-line type-SFCL and the maximum current density was 14.61 $A/m^2$ and also the maximum Joule heat was 2,030 $W/m^2$ in this region. We think that the new and the modified structure must be considered for an uniform distribution of the electromagnetic field.

  • PDF

Analytical and Experimental studies on Dielectric Characteristics of High Voltage Superconducting Machines in Liquid Nitrogen (액체질소를 사용하는 초전도 고전압 전력기기의 절연 특성 연구)

  • Na, J.B.;Ko, T.K.;Kang, H.;Seok, B.Y.;Kim, T.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.46-50
    • /
    • 2011
  • The electrical insulation design of high voltage superconducting fault current limiters (SFCLs) should be confirmed to be applied for the stabilization of the power grid. This paper describes numerical analysis and AC dielectric experiments for developing high voltage SFCLs. The electric field distributions between applied high voltage part and ground were calculated by finite element method (FEM) simulation tool and AC criterion of liquid nitrogen at 200 kPa was calculated from correlation between the field utilization factor and FEM simulation results. This paper deals with ceonceptual insulation design of a 154 kV class single-phase no-inductively wound solenoid type SFCL which was focused on gap distance between the cryostat and superconducting coils. Furthermore, the shield ring effect was confirmed to reduce maximum electric field at applied high voltage part.

Current Limitation by Bi-2223 Bifilar Winding Coils

  • Ahn Min Cheol;Bae Duck Kweon;Park Dong Keun;Yang Seong Eun;Yoon Yong Soo;Ko Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.31-34
    • /
    • 2005
  • There are many kinds of high temperature superconducting (HTS) application using Bi-2223 tape which is the most commercialized HTS material. Also, resistive superconducting fault current limiters (SFCLs) have been developed using many kinds of superconducting material such as YBCO thin film, Bi-2212 bulk and so on. However, SFCL using Bi-2223 tape has never been developed. This paper deals with the feasibility study on SFCL using Bi-2223 wire. The over-current behaviors of Bi-2223 short-length sample were measured. To make the resistive SFCL, two small-scale bifilar winding modules using 7m Bi-2223 wire were fabricated; i.e. solenoid type bifilar coil and pancake type one. The short-circuit tests of the coils were successfully performed up to 16 V$_{rms}$ From these tests, the current limiting capabilities of Bi-2223 bifilar coils were confirmed and current limiting performances between two winding types were compared. In addition, the feasibility of resistive SFCL using another HTS wire, i.e. YBCO coated conductor, was also investigated.

Current Limiting Characteristics of Flux-Lock Type High-TC Superconducting Fault Current Limiter According to Fault Angles (사고각에 따른 자속구속형 전류제한기의 전류제한특성)

  • Park, Hyoung-Min;Lim, Sung-Hun;Cho, Yong-Sun;Park, Chung-Ryul;Han, Byoung-Sung;Choi, Hyo-Sang;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.12-14
    • /
    • 2004
  • We investigated current limiting characteristics of the flux-lock type high-Tc superconcting fault current limiter(HTSC-FCL) according to fault angles. The Flux-lock type HTSC-FCL consists of primary and the secondary copper coils that are wound in parallel each other through the iron core and YBCO thin flim. In this paper, the current limiting characteristics of the flux-lock type HTSC-FCL according to fault angles in case of the subtractive and additive polarity windings were compared and analyzed. From the results, the flux-lock type HTSC-FCL could limit more quickly fault current as the fault angles increased irrespective of the fault angles. On the other hand, the initial power burden of HTSC element after a fault happened increased as the fault angles increased. In addition, it was confirmed that the resistance of flux-lock type HTSC-FCL in case of subtractive polarity winding was more increased than that of additive polarity winding and that the peak current of fault current in case of subtractive polarity winding was larger than that of the additive polarity winding case.

  • PDF

Development of Distribution Superconducting Fault Current Limiter and its Monitoring System for Power IT Application (배전급 초전도한류기 및 전력 IT 응용을 위한 실시간 모니터링 시스템 개발)

  • Park, Dong-Keun;Seok, Bok-Yeol;Ko, Tae-Kuk;Kang, Hyoung-Ku
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.398-402
    • /
    • 2008
  • Recently, the development of superconducting fault current limiters (SFCLs) has been required as power demands increase in the power system. A distribution-level prototype resistive SFCL using coated conductor (CC) has been developed by Hyundai Heavy Industries Co., Ltd. and Yonsei University for the first time in the world. The ratings of the SFCL are 13.2kV/630A at normal operating condition. A novel non-inductive winding method is used in fabricating coils so there is almost zero impedance during normal operation. The distribution SFCL is cooled by sub-cooled liquid nitrogen $(LN_2)$ of 65K and 3 bar to enhance cryo-dielectric performance, critical current density, and thermal conductivity. In order to make reliable operation of an SFCL in real power systems, we monitored and controled its operation conditions by using supervisory control and data acquisition (SCADA) method. Thus, a monitoring system for the SFCL employing information technology (IT) is proposed and developed to be on the lookout for the operation conditions such as inside temperature, inside pressure, $LN_2$ level, voltage and current. Since operation temperature should be kept constant, bang-bang control for temperature feedback with a heater attached to the cold head of cryo-cooler is applied to the system. Short-circuit tests with prospective fault current of 10kA and AC dielectric withstand voltage tests up to 143kV for 1 minute were successfully performed at Korea Electrotechnology Research Institute. This paper deals with the development of a distribution level SFCL and its monitoring system for reliable operation.

Electromagnetic characteristics of non-inductively wound coil according to gap length between layers (무유도 초전도 한류 코일의 층간 간격에 따른 전자기적 특성 연구)

  • Yang, Seong-Eun;Park, Dong-Keun;Chang, Ki-Sung;Kim, Young-Jae;Ahn, Min-Cheol;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.822_823
    • /
    • 2009
  • Superconducting fault current limiters (SFCLs) provide one of the most effective solutions to cope with enormous increase of fault current level. The 13.2 kV/ 630 A class resistive SFCL using coated conductor (CC) was developed and its short-circuit test was successful. Successful commercialization of the SFCL requires that no loss is produced by impedance of limiting coil during normal operation. Since the limiting coil consists of inner layer and outer layer, gap length between the layers is an important parameter to analyze the electromagnetic characteristics of coil. This paper deals with the electromagnetic characteristics of coil according to gap length through the simulation and analysis in comparison with experiment results.

  • PDF

Experimental Study on the High Temperature Superconductor for Investigated Design Factors of Distribution and Transmission Level Resistive Type Superconductor Fault Current Limiter (송.배전급 저항형 초전도 한류기 설계 요소 검출을 위한 고온 초전도 선재의 특성 연구)

  • Na, Jin-Bae;Jang, Jae-Young;Jo, Hyoun-Chul;Hwang, Young-Jin;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.10-13
    • /
    • 2011
  • The power demand is steadily increasing due to rapidly develop of industrial field. The ratio of prospected increment of power consumption is over 2.2 % per year from 2007 to 2020 year. The superconducting fault current limiters(SFCLs) should be suggested to be one of promising machines to protect power grid. Four basis tests such as resistivity, short-circuit tests, ac losses and recovery time were investigated according to various reached maximum temperature, operating temperature. This paper deals with investigation of the various commercial high temperature superconductor for applying resistive type SFCLs.