• 제목/요약/키워드: Superconducting Fault Current Limiters

검색결과 116건 처리시간 0.029초

하이브리드 방식을 적용한 배전급 초전도 한류기 개발 (Hybrid Superconducting Fault Current Limiters for Distribution Electric Networks)

  • 이방욱;박권배;심정욱;오일성;임성우;김혜림;현옥배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.102-103
    • /
    • 2007
  • In order to apply resistive superconducting fault current limiters into electric power systems, the urgent issues to be settled are as follows, such as initial installation price of SFCL, operation and maintenance cost due to ac loss of superconductor and the life of cryostat, and high voltage and high current problems. The ac loss and high cost of superconductor and cryostat system are main bottlenecks for real application. Furthermore in order to increase voltage and current ratings of SFCL, a lot of superconductor components should be connected in series and parallel which resulted in extreme high cost. Thus, in order to make practical SFCL, we designed novel hybrid SFCL which combines superconductor and conventional electric equipment including vacuum interrupter, power fuse and current limiting reactor. The main purpose of hybrid SFCL is to drastically reduce total usage of superconductor by adopting current commutation method by use of superconductor and high fast switch. Consequently, it was possible to get the satisfactory test results using this method, and further works for practical applications are in the process.

  • PDF

3.8 ㎸급 7직렬 저항형 고온초전도한류기의 제작 및 시험 (Fabrication and Test of the 3.8 ㎸ Resistive SFCL Based on YBCO Films)

  • 심정욱;김혜림;현옥배;박권배;이방욱;강종성;오일성
    • Progress in Superconductivity
    • /
    • 제5권2호
    • /
    • pp.136-140
    • /
    • 2004
  • We fabricated and tested a resistive superconducting fault current limiters (SFCL) operated at 3.8 ㎸ based on YBCO thin films. The SFCL was composed of 7 components connected in series. Each component was designed to be capable of current limiting at 600 V, and has a SiC shunt resistor ( $R_{s}$) of 40 Ω in Parallel. Short circuit tests were carried out fur 0 and 90 degree faults lasting fur 5 cycles. The test results showed that the 7 components were quenched simultaneously under the safe quenches and evenly shared the applied voltage. The SFCL successfully suppressed the fault currents below 94 $A_{peak}$ within the quarter cycle after fault.t.t.

  • PDF

1선 지락 사고 시 3 권선 변압기에 적용된 초전도 한류기의 동작 특성 분석 (Analysis of Transient Characteristics of a SFCL Applied Into Third-winding Transformer in a Single Line-to-ground Fault)

  • 최혜원;최효상;정병익
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.1033-1037
    • /
    • 2013
  • Coercion transformer is commonly used in the electrical grid which in three phase of distribution system. The accident of the electrical grid is divided into a single, a double, a third line-to-ground faults and a double, a third line-to-line faults. A single line-to-ground fault accounts for nearly 75[%] among them. In this research, when a Superconducting Fault Current Limiters (SFCL) was applied to the three phase power system, operation in a single line-to-ground fault and limiting characteristics of fault current according to turns ratio of third winding were analyzed. When a single line-to-ground fault happened, secondary winding's circuit was open. Then third winding's circuit with a SFCL was closed. So fault current was limited by diverted circuit. At this time, we could find out that size of the limited fault current could be changed according to third winding rate. We confirmed that limiting operation of the fault current was carried out within one-period. These results will be utilized in adjusting the size of the SFCL.

전자장 해석을 통한 매트릭스형 한류기용 리액터 설계 및 특성해석 (Design and Characterization of a Reactor for Matrix Type SFCLs Using Electromagnetic Field Analysis)

  • 정동철;윤창훈;최효상
    • 전기학회논문지P
    • /
    • 제58권2호
    • /
    • pp.227-230
    • /
    • 2009
  • In this paper, we performed the optimum design of reactors for matrix-type superconducting-fault current limiters (SFCLs), using electromagnetic analysis tools. We decided a optimun position within a reactor for superconducting elements of current-limiting parts and trigger parts from the calculation of magnetic flux internsity for reactor structures. Also we decided effective distance length between two reactors through the analysis of the distribution of magnetic field, according to distance lengths between them. We designed and characterized matrix-type SFCLs, based on our optimum design of a reactor. We confirmed uniform distribution of a fault current, resulted from the improvement of simultaneous quench characteristics within our matrix-type SFCL.

배전급 초전도 한류기 개발을 위한 Bi-2212 초전도 한류소자의 사고전류 제한 특성 (Fault Current Limitation Characteristics of the Bi-2212 Bulk Coil for Distribution-class Superconducting Fault Current Limiters)

  • 심정욱;이해근;임성우;김혜림;현옥배;박권배;이방욱;오일성;김호민
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.277-281
    • /
    • 2007
  • We investigated fault current limitation characteristics of the resistive superconducting fault current limiter (SFCL) which consisted of a Bi-2212 bulk coil and a shunt coil. The Bi-2212 bulk coil and the shunt coil were connected in parallel. The Bi-2212 bulk coil was placed inside the shunt coil to induce field-assisted quench. The fault test was conducted at an input voltage of $200V_{rms}$ and fault current of $12kA_{rms}\;and\;25kA_{rms}$. The fault conditions were asymmetric and symmetric, and the fault period was 5 cycles. The test results show that the SFCL successfully limited the fault current of $12kA_{rms}\;and\;25kA_{rms}$ to below $5.5{\sim}6.9kA_{peak}\;within\;0.64{\sim}2.17$ msec after the fault occurred. Limitation was faster under symmetric fault test condition due to the larger change rate of current. We concluded that the speed of fault current limitation was determined by the speed of current rise rather than the amplitude of a short circuit current. These results show that the Bi-2212 bulk coil is suitable for distribution-class SFCLS.

6.6kV 200A 초전도 한류기용 초전도소자 설계 (Design of Superconducting Elements for the 6.6kV 200A Superconducting Fault Current Limiter)

  • 강종성;이방욱;박권배;오일성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.518-520
    • /
    • 2004
  • In these days, there is a demand to develop fault current limiters(FCLs) to reduce excessive fault current and protect electrical equipments which are installed in the transmission and distribution power systems. We considered the resistive superconducting FCLs among the various kinds of FCLs. In this study, in order to develop the resistive superconducting FCL of 6.6kV 200A $3\phi$, we designed the new mask pattern for etching YBCO films by means of numerical analysis method, current limiting experiments and visualization of bubbles in films and investigated dielectric performance of the designed mask by using elecrtostatic numerical analysis method and breakdown experiments. We etched YBCO films by using the newly designed mask, connected the etched films in series and in parallel, and designed the 6.6kV resistive SFCL and then we observed the current limiting characteristics of the SFCL.

  • PDF

초전도 전류제한기의 패턴형상별 특성 (Characteristics of superconducting fault current limiters with various pattern shape)

  • 최효상;정헌상;최창주;이상일;정수복;오금곤;임성훈;한병성;정동철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.529-532
    • /
    • 2003
  • Quench behavior of resistive superconducting fault current limiters (SFCLs) with various pattern shapes was investigated. The pattern shapes employed were meander, bi-spiral, and spiral shapes of identical line width, gap and margin. SFCLs were fabricated from YBCO thin films grown on two-inch diameter $Al_2O_3$ substrates under the same conditions. Resistance rise of current limiting elements was low at a spiral shape before the whole quench completion, which may act as a disadvantage for simultaneous quench in serial connection between current limiting elements, but the temperature tended to have similar values at higher voltages. On the other hand, bi-spiral shape was severe at insulation level between current limiting lines. When these aspects were considered, we concluded that a meander shape was appropriate to design for a resistive SFCL based on thin films except the concentration of electric field at edge areas of strip lines.

  • PDF

전력 계통 신뢰도 개선을 위한 대표적인 한류기 유형 및 적용 효과 분석 (Review of Typical Fault Current Limiter Types and Application Effect to Improve Power System Reliability)

  • 고윤석;이우철
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1133-1142
    • /
    • 2023
  • 전력 계통에서 전력 용량의 급격한 증가는 고장 용량이 차단기의 차단 용량을 초과하게 함으로써 계통의 신뢰도를 심각하게 저하시킬 수 있다. 한류기는 고장 용량을 차단 용량 레벨로 제한함으로써 신뢰도를 개선할 수 있는 실질적이고 효과적인 방법이다. 본 연구에서는 한류기의 전력계통 적용 시 적용 방법론을 개발하는 데에 도움이 될 수 있도록 먼저, 한류기의 유형별 구조와 동작원리를 분석하였으며 주요 장단점들을 비교하였다. 다음, 한류기의 전력 계통에 대한 적용 효과를 검증하기 위해 한류기가 도입된 전력계통을 모델링하였다. 끝으로, EMTP-RV를 이용하여 3상 단락 고장을 모의한 후, 한류기의 적용 전과 후의 전류를 비교를 통해 한류기에 의해 고장 전류 감소하는 것을 확인함으로써 적용 효과를 검증할 수 있었다.

15 kVA급 박막형 초전도 전류제한기의 한류특성 (Characteristics of 15 kVA Superconducting Fault Current Limiters Using Thin Films)

  • 최효상;현옥배;김혜림;황시돌
    • 한국전기전자재료학회논문지
    • /
    • 제13권12호
    • /
    • pp.1058-1062
    • /
    • 2000
  • We investigated resistive superconducting fault current limites (SFCLs) fabricated using YBCO thin films on 2-inch diameter sapphire substrates. Nearly identical SFCL units were prepared and tested. The units were connected in series and parallel to increase the current and voltage ratings. A serial connection of the units showed significantly unbalanced power dissipation between the units. This imbalance was removed by introducing a shunt resistor to the firstly quenched unit. Parallel connection of the units increased the current rating. An SFCL module of 4 units in parallel, each of which has minimum quench current rating. An SFCL module of 4 units in parallel, each of which has minimum quench current 25 A$\_$peak/, was produced and successfully tested at a 220 V$\_$rms/circuit. From the resistance increase, we estimated that the film temperature increased to 200 K in 5 msec, and 300 K in 120 msec. Successive quenches revealed that this system is stable without degradation in the current limiting capability under such thermal shocks as quenches at 220 V$\_$rms/.

  • PDF