• Title/Summary/Keyword: Superconducting Fault Current Limiter (SFCL)

Search Result 377, Processing Time 0.029 seconds

Fault Current limiting Characteristics of Flux-Lock type Superconducting Fault Current Limiter with Open-loop Iron Core according to the Voltage Level (개루프 철심을 이용한 자속구속형 초전도한류기의 전압별 전류제한 특성분석)

  • Nam, Gueng-Hyun;Choi, Hyo-Sang;Park, Hyoung-Min;Cho, Yong-Sun;Lee, Na-Young;Lim, Sung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.368-370
    • /
    • 2005
  • Superconducting fault current limiter (SFCL) provides the effect such as enhancement in power system reliability due to limiting fault current in a few miliseconds. The flux-lock type SFCL among various type SFCLs consists of two coils wound on the same iron core and a component using the YBCO thin film. In the SFCL, operation characteristics can be controlled by adjusting the inductances and the winding directions of the coils. In this paper, we investigated the various fault current limiting characteristics according to the voltage level. To analyze the current limiting performance, we compared operational characteristics on the subtractive polarity winding direction on in case of open-loop iron core.

  • PDF

An EMTDC Simulation for a Superconducting Fault Current Limiter in the Line-to-Line Fault (선간단락 사고에 대한 초전도 한류기의 EMTDC 해석)

  • Choi, Hyo-Sang;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.242-244
    • /
    • 1998
  • We have performed an EMTDC simulation for the current limiting effects of a superconducting fault current limiter (SFCL) for the 154 kV transmission line between the Gaepo and Sungnam substations. The simulation showed that a line-to-line fault increases the fault current up to 54 kA. The SFCL with $100{\Omega}$ impedance after quench limited the current to 15 kA within a half cycle. This limited current is well below the upper limit of a circuit breaker, suggesting that the impedance of the SFCL in the transmission line is sufficient.

  • PDF

The conceptual design and analysts of three phase superconducting fault current limiter (일체형 삼상 고온 초전도 한류기의 단락 특성 해석)

  • Lee, Sueng-Je;Lee, Chan-Joo;Lee, Chang-Yul;Jang, My-Hye;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.94-97
    • /
    • 1998
  • The conceptual design of integrated three phase superconducting fault current limiter (SFCL) is presented. And through simulation of power system where this SFCL is installed, the characteristics of this SFCL is analyzed. It is like three-phase transformer. So it has the same characteristics with inductive single phase SFCL. But it has more merits than single phase SFCL. Differently to single phase SFCL, integrated three phase SFCL induces impedance at all phase by any single phase fault to protect the power system more safely.

  • PDF

Study on the OCR Setting Using the Voltage Component Considering Application of the SFCL in a Power Distribution System (배전계통에 초전도한류기 적용시 전압요소를 이용한 과전류계전기 정정 연구)

  • Lim, Seung-Taek;Lim, Sung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1587-1594
    • /
    • 2018
  • In south korea, the government make a plan to generate the 20% of the total electrical power as renewable source like wind generation and solar generation. This plan will accelerate the increase of fault current with power industry's growth. As the increase of fault current, the superconducting fault current limiter (SFCL) has been studied. In case that the SFCL is applied in power system, it can cause the overcurrent relay (OCR)'s trip delay because of the reduced fault current. In this paper, the overcurrent relay with voltage component was suggested to improve the OCR's trip delay caused by the SFCL and compensational constant was introduced to have the trip time similar to the trip time of case without the SFCL. For conforming the effect of the suggested OCR with voltage component, the PSCAD/EMTDC simulation modeling and analysis were conducted. Through the simulation, it was conformed that the trip delay could be improved by using the suggested OCR and compensational constant.

배전계통 위치별 초전도전류제한기 적용효과 분석

  • Im, Seong-Hun;Hwang, Jong-Seon;Han, Byeong-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.213-213
    • /
    • 2009
  • In this paper, we investigated the current limiting characteristics due to the application location of the superconducting fault current limiter (SFCL) such as the feeder, the bus, the secondary side of transformer in a power distribution system. In addition, the quench and the recovery characteristics of the SFCL installed in each location of the power distribution system were compared each other. Through the analysis, in case that the SFCL was applied into the feeder line, its current limiting and voltage-drop compensating characteristics were confirmed to be the more effective. On the other hand, the power burden of the SFCL was increased higher compared to the SFCL'S other application location.

  • PDF

A Study on Design, Fabrication Techniques and Test Results of 1.2kV 180A Inductive Superconducting Fault Current Limiter by Conduction-Cooled System (전도냉각에 의한 1.2 KV/80 A급 유도형 고온초전도 한류기의 설계, 제작 및 테스트에 관한 연구)

  • 강형구;전우용;이승제;안민철;배덕권;윤용수;고태국
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.30-35
    • /
    • 2003
  • The inductive superconducting fault current limiter (SFCLJ limits the fault current with its dc reactor. To fabricate the optimal dc reactor for inductive SFCL, several design and manufacturing technologies are necessary. In this paper, the manufacturing technology for dc reactor and cryogenic cooling method are described in detail. GM-cryocooler was used enlarge the critical current of dc reactor by cooling down the temperature of dc reactor about 20 K. Moreover, the results of short circuit test were described. Finally, the thermal characteristics of conduction-cooled system were discussed and then, sub-cooled nitrogen system was proposed to enhance the thermal stability of dc reactor.

Fault Current Limiting Characteristics of Flux-lock Type SFCL with Several Secondary Windings

  • Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung;Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.193-197
    • /
    • 2005
  • We investigated fault current limiting characteristics of the flux-lock type superconducting fault current limiter (SFCL), which consisted of a primary winding and several secondary windings connected in series between $high-T_C$ superconducting (HTSC) thin films. Each YBCO thin film has a 2 mm wide and 42 cm long meander line with 14 stripes of different length. The power imbalance due to the slight difference of Ie between YBCO current limiting elements causes the significant power burden on YBCO element with lower $I_C$. We confirmed from our experiments that the mutual coupling between the primary winding and secondary windings of the flux-lock type SFCL reduced the power imbalance between YBCO current limiting elements compared with the resistive type SFCL connected in series.

Improvement of Quench Properties of a Superconducting Fault Current Limiter Using YBCO Films by Serial and Parallel Combinations (직.병렬 조합에 의한 박막형 초전도 한류기의 퀜치특성 개선)

  • 최효상;김혜림;현옥배
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.315-319
    • /
    • 2003
  • We improved quench properties of a superconducting fault current limiter (SFCL) based on YBCO thin films by their serial and parallel combinations. The SFCL consisted of 6 switching elements fabricated of 4 inch-diameter YBCO thin films. The quench currents of the switching elements were distributed between 33.9 A and 35.6 A. Simple serial connection resulted in imbalanced power dissipation between switching elements even at the quench current difference of 0.6 A. On the other hand, $2{\times}2$ and $3{\times}2$ stack combinations produced simultaneous quenches. The $3{\times}2$ stack combination showed better simultaneous quench behavior than the $2{\times}2$ stacks. This is suggested to be because the currents between switching elements in parallel connection of the $3{\times}2$ stacks were more effectively redistributed than the $2{\times}2$ stacks.

Insulation Design for a 13.2kV/630A High-Tc Superconducting Fault Current Limiter (13.2kV/630A급 고온초전도 한류기의 절연설계)

  • Kang, Hyoung-Ku;Lee, Chan-Joo;Ko, Tae-Kuk;Seok, Bok-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.941-942
    • /
    • 2007
  • The superconducting fault current limiter (SFCL) consists of superconducting coil for limiting the fault current and cryogenic cooling system for keeping the coil in superconducting condition. The study on the insulation design for superconducting coil and cryogenic cooling system should be elaborately performed to develop a high voltage SFCL. In this paper, insulation design of solenoid coil for 13.2kV/630A SFCL is performed through the AC dielectric breakdown test and lightning impulse dielectric strength test. The dependence of dielectric characteristics on the magnitude of liquid nitrogen pressure is also investigated. Through the investigation, it is verified that dielectric characteristics of sub-cooled nitrogen are strongly enhanced by the pressurization. The electrical insulation design of 13.2kV/630A SFCL is performed by applying the experimental results. The successful insulation design for development of 13.2kV/630A SFCL is confirmed by AC dielectric breakdown tests.

  • PDF

EMTDC Simulation for a Superconducting Fault Current Limiter in the Transmission Line (송전선로 고장에 대한 초전도 한류기의 EMTDC 해석)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Ko, Tae-Kuk;Kim, Jin-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.220-223
    • /
    • 1998
  • We have performed an EMTDC simulation for the current limiting effects of a superconducting fault current limiter (SFCL) for the 154 kV transmission line between the Gaepo and Sungnam substations. The fault current increased up to 39 kA during an artificial ground fault. The SFCL with 100 ${\Omega}$ impedance after quench limited the current to 15 kA within a half cycle. This limited current is well below the upper limit of a circuit breaker, suggesting that the impedance of the SFCL in the transmission line is sufficient.

  • PDF