• Title/Summary/Keyword: Superconducting Element

Search Result 272, Processing Time 0.016 seconds

A Study on Indirect Attachment Method of Compensation Materials to Increase Signal Intensity in Magnetic Resonance Imaging (자기공명영상검사 시 신호강도를 높이기 위한 보상물질의 간접부착 방식에 관한 연구)

  • Son, Soon-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.7
    • /
    • pp.437-442
    • /
    • 2017
  • Previously, studies on compensation material to increase the signal intensity have been conducted which does not affect the reading of images. However, the compensation material has a concern on patient infection as it is attached directly on the skin. Therefore, in this study, we tested an indirect attachment of the compensation material as an alternative method of the direct attachment. The silicon compensation material was fabricated in the form of a cylindrical bar and attached to each element of the 8 channel head coil. Then the signal intensities of the water phantom pre and post application of the silicon were measured. T1 and T2-weighted images were acquired using an 8-channel head coil and a 3.0T superconducting MRI. Signal intensities were measured by using an image measuring program. Paired t-test was used to verify if there were significant differences. The signal intensity before application of the silicon was significantly increased by 3.39% and 2.62% in T1 and T2 weighted images, respectively. Although the indirect attachment method had a limitation to completely replace the existing method, it was considered to be useful in patients with infectious diseases such as diabetic complications since it had a meaningful improvement in signal intensity based on the filling factor increase.

Analysis of nested HTS magnets considering the magnitude and orientation of applied magnetic field (인가자장의 크기와 방향을 고려한 고온초전도 다중마그넷의 특성 해석)

  • Park, Ju-Gyeong;Cha, Guee-Soo;Lee, Hee-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.23-30
    • /
    • 2017
  • Most superconducting magnets which generate more than 20 T consist of nested magnets. A combination of LTS and HTS magnets is conventionally used, but high field magnets which use only HTS magnets have been developed recently. As HTS wires have very strong magnetic anisotropy, appropriate techniques should be used to consider this effect properly. The load line method has been conventionally used to design nested magnets for high field generation. Because this method considers only parallel and perpendicular magnetic fields, the effect of their orientation is not taken into account. In this paper, the actual orientation of the magnetic fields from 0 to 90 degrees is considered. The critical currents of the two kinds of high field nested magnets designed using the proposed method are calculated. The finite element method is used to calculate the distribution of the magnetic fields and the evolution strategy is used to find the critical current which maximizes the central magnetic field.