Browse > Article
http://dx.doi.org/10.5762/KAIS.2017.18.11.23

Analysis of nested HTS magnets considering the magnitude and orientation of applied magnetic field  

Park, Ju-Gyeong (Dept. of Electrical Engineering, Soonchunhyang University)
Cha, Guee-Soo (Dept. of Electrical Engineering, Soonchunhyang University)
Lee, Hee-Joon (MirtechRnd)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.18, no.11, 2017 , pp. 23-30 More about this Journal
Abstract
Most superconducting magnets which generate more than 20 T consist of nested magnets. A combination of LTS and HTS magnets is conventionally used, but high field magnets which use only HTS magnets have been developed recently. As HTS wires have very strong magnetic anisotropy, appropriate techniques should be used to consider this effect properly. The load line method has been conventionally used to design nested magnets for high field generation. Because this method considers only parallel and perpendicular magnetic fields, the effect of their orientation is not taken into account. In this paper, the actual orientation of the magnetic fields from 0 to 90 degrees is considered. The critical currents of the two kinds of high field nested magnets designed using the proposed method are calculated. The finite element method is used to calculate the distribution of the magnetic fields and the evolution strategy is used to find the critical current which maximizes the central magnetic field.
Keywords
Critical current; Evolution strategy; HTS; $I_C-B({\Theta})$; Nested magnet; SCS4050;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Kang, Y. Kim, G. Cha K. Paik, H. Lee, "Characteristics of Magnets Depending on the Width of High Temperature Superconducting Tapes Applied to the Outer Pancake Windings", IEEE Trans. Applied Superconductivity, vol. 22, no. 3, 3900104, June, 2012. DOI: https://doi.org/10.1109/TASC.2011.2179690   DOI
2 Y. Kim, M. Ku, G. Cha, S. Park, "Properties of High Temperature Superconducting Magnet With Optimized Air Gap Between Pancake Windings," IEEE Trans. Applied Superconductivity, vol. 21, no. 3, pp. 2267-2270, June, 2011. DOI: https://doi.org/10.1109/TASC.2010.2089034   DOI
3 D. Turrioni, E. Barzi, M. J. Lamm, R. Yamada, A. V. Zlobin, A. Kikuchi, "Study of HTS Wires at High Magnetic Fields", IEEE Trans. Applied Superconductivity, vol. 19, no. 3, pp. 3057-3060, June, 2009.   DOI
4 D. Turrionia, E. Barzia, M. Lamma, V. Lombardoa, C. Thiemeb, A. V. Zlobina, "Angular measurements of HTS critical current for high field solenoids", Advances in Cryogenic Engineering, AIP, vol. 54, pp. 451-458, 2008. DOI: https://doi.org/10.1063/1.2900382   DOI
5 F. Borgnolutti, A. Badel, T. Benkel, X. Chaud, F. Debray, P. Fazilleau, T. Lecrevisse, P. Tixador, "Design Study of a 10-T REBCO Insert Solenoid", IEEE Trans. Applied Superconductivity, vol. 26, no. 4, June, 2016. DOI: https://doi.org/10.1109/TASC.2016.2518810   DOI
6 Y. Iwasa, J. Bascunan, S. Hahn, J. Voccio, Y. Kim, T. Lecrevisse, J. Song, K. Kajikawa, "A High-Resolution 1.3-GHz/54-mm LTS/HTS NMR Magnet", IEEE Trans. Applied Superconductivity, vol. 25, no. 3, 4301205, June, 2015. DOI: https://doi.org/10.1109/TASC.2014.2363496   DOI
7 J. Liu, S. Song, Q. Wang, Q. Zhang, "Critical Current Analysis of an YBCO Insert for Ultrahigh-Field All-Superconducting Magnet", IEEE Trans. Applied Superconductivity, vol. 26, no. 3, 4303405, April, 2016. DOI: https://doi.org/10.1109/TASC.2016.2532472   DOI
8 M. Kasper, "Shape Optimization By Evolution Strategy", IEEE Trans. Magnetics, vol. 28, no. 2, pp. 1556-1560, March, 1992. DOI: https://doi.org/10.1109/20.123995   DOI
9 J. Bascunan, S. Hahn, Y. Kim, J. Song, Y. Iwasa , "90-mm/18.8-T All-HTS Insert Magnet for 1.3 GHz LTS/HTS NMR Application: Magnet Design and Double-Pancake Coil Fabrication", IEEE Trans. Applied Superconductivity, vol. 24, no. 3, 4300904, June, 2014. DOI: https://doi.org/10.1109/TASC.2013.2285781   DOI
10 J. Bascunan, S. Hahn, T. Lecrevisse, J. Song, D. Miyagi, Y. Iwasa, "An 800MHz all REBCO Insert for the 1.3GHz LTS/HTS NMR Magnet Program - A Progress Report", IEEE Trans. Applied Superconductivity, vol. 26, no. 4, 4300205, June, 2016. DOI: https://doi.org/10.1109/TASC.2015.2512045   DOI
11 M. Kang, M. Koo, H. Lee, G. Cha, "Increment of the Central Magnetic Field of an YBCO Magnet by Using Multiple Power Sources", IEEE Trans. Applied Superconductivity, vol. 19, no. 3, pp. 1253-1256, June, 2009. DOI: https://doi.org/10.1109/TASC.2009.2017833   DOI
12 Q. Wang, J. Liu, S. Song, G. Zhu, Y. Li, X. Hu, L. Yan, "High Temperature Superconducting YBCO Insert for 25 T Full Superconducting Magnet", IEEE Trans. Applied Superconductivity, vol. 25, no. 3, 4603505, June, 2015. DOI: https://doi.org/10.1109/TASC.2014.2365630   DOI
13 W. D. Markiewicz, D. C. Larbalestier, H. W. Weijers, A. J. Voran, K. W. Pickard, W. R. Sheppard, J. Jaroszynski, A. Xu, R. P. Walsh, J. Lu, A. V. Gavrilin, P. D. Noyes, "Design of a Superconducting 32T Magnet With REBCO High Field Coils", IEEE Trans. Applied Superconductivity, vol. 22, no. 3, 4300704, June, 2012. DOI: https://doi.org/10.1109/TASC.2011.2174952   DOI
14 S. Yoon, J. Kim, K. Cheon, H. Lee, S. Hahn, S. Moon, "26 T 35 mm all-$GdBa_2Cu_3O_{7-x}$ multi-width no-insulation superconducting magnet", Superconductor Science and Technology, Vol. 29, no. 4, March, 2016. DOI: https://doi.org/10.1088/0953-2048/29/4/04LT04   DOI