• Title/Summary/Keyword: Superconducting Element

Search Result 272, Processing Time 0.029 seconds

Characteristics comparison between air-cored and iron-cored 100 kW HTS field winding synchronous motors

  • Yoon, Jonghoon;Bong, Uijong;An, Soobin;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.38-43
    • /
    • 2020
  • This paper presents comparative research on characteristics of air-cored and iron-cored high-temperature superconductor (HTS) field winding synchronous motors. The 100 kW air-cored model is designed analytically by Spatial Harmonic Method, and based on this model, the iron-cored model having the same output power is designed for comparison. Due to the substantial difference of permeability property between air and iron-core, there is a difference of magnetic field magnitude and angle with respect to the HTS tape c-axis, resulting in a different critical current of the field winding considering the anisotropic property of HTS tape. For a detailed comparison between two models, the following key motor characteristics are calculated through the Finite Element Method (FEM) simulation: 1) critical current; 2) HTS wire length; and 3) torque characteristics. From the simulation results, it can be confirmed that the critical current value of the iron-cored model increases by 33 %. Also, in the case of the superconducting wire consumption, those of the iron-cored and air-cored models are 95.3 m and 815.6 m, respectively. So the wire usage can be reduced to about 88 % by using iron core. However, in terms of torque characteristics, the torque ripple of the iron-cored model is about twice as large as that of the air-cored model, which may be a disadvantage on vibration and acoustic noise.

Conceptual design of cooling anchor for current lead on HTS field coils

  • Hyeon, C.J.;Kim, J.H.;Quach, H.L.;Chae, S.H.;Yoon, Y.S.;Lee, J.;Han, S.H.;Jeon, H.;Choi, Y.H.;Lee, H.G.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.38-43
    • /
    • 2017
  • The role of current lead in high-temperature superconducting synchronous machine (HTSSM) is to function as a power supply by connecting the power supply unit at room temperature with the HTS field coils at cryogenic temperature. Such physical and electrical connection causes conduction and Joule-heating losses, which are major thermal losses of HTSSM rotors. To ensure definite stability and economic feasibility of HTS field coils, quickly and smoothly cooling down the current lead is a key design technology. Therefore, in this paper, we introduce a novel concept of a cooling anchor to enhance the cooling performance of a metal current lead. The technical concept of this technology is the simultaneously chilling and supporting the current lead. First, the structure of the current lead and cooling anchor were conceptually designed for field coils for a 1.5 MW-class HTSSM. Then, the effect of this installation on the thermal characteristics of HTS coils was investigated by 3D finite element analysis.

An ultra low-noise radio frequency amplifier based on a dc SQUID

  • Andre, Marc-Olivier;Kinion, Darin;Clarke, John;Muck, Michael
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.2-6
    • /
    • 2000
  • We have developed an extremely sensitive radio frequency amplifier based on the dc superconducting quantum interference device (dc SQUID). Unlike a conventional semiconductor amplifier, a SQUID can be cooled to ultra-low temperatures (100 mK or less) and thus potentially achieve a much lower noise temperature. In a conventional SQUID amplifier, where the integrated input coil is operated as a lumped element, parasitic capacitance between the coil and the SQUID washer limits the frequency up to which a substantial gain can be achieved to a few hundred MHz. This problem can be circumvented by operating the input coil of the SQUID as a microstrip resonator: instead of connecting the input signal open. Such amplifiers have gains of 15 dB or more at frequencies up to 3 GHz. If required, the resonant frequency of the microstrip can be tuned by means of a varactor diode connected across the otherwise open end of the resonator. The noise temperature of microstrip SQUID amplifiers was measured to be between $0.5\;K\;{\pm}\;0.3\;K$ at a frequency of 80 MHz and $1.5\;K\;{\pm}\;1.2\;K$ at 1.7 GHz, when the SQUID was cooled to 4.2 K. An even lower noise temperature can be achieved by cooling the SQUID to about 0.4 K. In this case, a noise temperature of $100\;mK\;{\pm}\;20\;mK$ was achieved at 90 MHz, and of about $120\;{\pm}\;100\;mK$ at 440 MHz.

  • PDF

An Ultra Low-noise Radio Frequency Amplifier Based on a DC SQUID

  • Muck, Michael;Ande, Marc-Olivier;Kinion, Darin;Clarke, John
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • We have developed an extremely sensitive radio frequency amplifier based on the dc superconducting quantum interference device (dc SQUID). Unlike a conventional semiconductor amplifier, a SQUID can be cooled to ultra-low temperatures (100 mK or less) and thus potentially achieve a much lower noise temperature. In a conventional SQUID amplifier, where the integrated input coil is operated as a lumped element, parasitic capacitance between the coil and the SQUID washer limits the frequency up to which a substantial gain can be achieved to a few hundred MHz. This problem can be circumvented. by operating the input coil of the SQUID as a microstrip resonator: instead of connecting the input signal between the two ends of the coil, it is connected between the SQUID washer and one end of the coil; the other end is left open. Such amplifiers have gains of 15 dB or more at frequencies up to 3 GHz. If required, the resonant frequency of the microstrip can be tuned by means of a varactor diode connected across the otherwise open end of the resonator. The noise temperature of microstrip SQUID amplifiers was measured to be between 0.5 K $\pm$ 0.3 K at a frequency of 80 MHz and 1.5 K $\pm$: 1.2 K at 1.7 GHz, when the SQUID was cooled to 4.2 K. An even lower noise temperature can be achieved by cooling the SQUID to about 0.4 K. In this case, a noise temperature of 100 mK $\pm$ 20 mK was achieved at 90 MHz, and of about 120 $\pm$ 100 mK at 440 MHz.

  • PDF

A Study of Bearing Strength on Composite Pinned-Joint at Low Temperature (저온환경에서 복합재료 핀 연결부의 Bearing 강도에 관한 연구)

  • Her, N.I.;Lee, S.Y.;Kim, J.H.;Lee, Y.S.;Sa, J.W.;Cho, S.;Im, K.H.;Oh, Y.K.;Choi, C.H.;Do, C.J.;Kwon, M.;Lee, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.413-418
    • /
    • 2001
  • Fundamental failure mode in a laminated composite pinned-joint is proposed to assess damage resulting from stress concentration in the plate. The joint area is a region with stress concentrations thus a complicated stress state exists. The modeling of damage in a laminated composite pinned-joint presents many difficulties because of the complexity of the failure process. In order to model progressive from initial to final, finite element methods are used rather than closed form stress analyses. Failure analysis must be a logical combination of suitable failure criteria and appropriate material properties degradation rules. In this study, the material properties which were obtained in previous study, the preparing process of the bearing strength test for a pinned joint CFRP composite plate subjected to in-plane loading at low temperature, and the FEM result of progressive damage model using ANSYS program are summarized to assess the structural safety of CFRP plate used in the magnetic supporting post of KSTAR(Korea Superconducting Tokamak Advanced Research).

  • PDF

Fabrication Process of Single Flux Quantum ALU by using Nb Trilayer (Nb Trilayer를 사용한 단자속양자 논리연산자의 제작공정)

  • Kang, J.H.;Hong, H.S.;Kim, J.Y.;Jung, K.R.;Lim, H.R.;Park, J.H.;Hahn, T.S.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.181-185
    • /
    • 2007
  • For more than two decades Nb trilayer ($Nb/Al_2O_3/Nb$) process has been serving as the most stable fabrication process of the Josephson junction integrated circuits. Fast development of semiconductor fabrication technology has been possible with the recent advancement of the fabrication equipments. In this work, we took an advantage of advanced fabrication equipments in developing a superconducting Arithmetic Logic Unit (ALU) by using Nb trilayers. The ALU is a core element of a computer processor that performs arithmetic and logic operations on the operands in computer instruction words. We used DC magnetron sputtering technique for metal depositions and RF sputtering technique for $SiO_2$ depositions. Various dry etching techniques were used to define the Josephson junction areas and film pattering processes. Our Nb films were stress free and showed the $T{_c}'s$ of about 9 K. To enhance the step coverage of Nb films we used reverse bias powered DC magnetron sputtering technique. The fabricated 1-bit, 2-bit, and 4-bit ALU circuits were tested at a few kilo-hertz clock frequency as well as a few tens giga-hertz clock frequency, respectively. Our 1-bit ALU operated correctly at up to 40 GHz clock frequency, and the 4-bit ALU operated at up to 5 GHz clock frequency.

  • PDF

Design of a IMVA Single-Phase HTS Power Transformer

  • Kim, Sung-Hoon;Kim, Woo-Seok;Park, Chan-Bae;Hahn, Song-yop;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.86-89
    • /
    • 2002
  • In this paper, the design of a IMVA single-phase high temperature superconducting(HTS) power transformer with BSCCO-2223 HTS tapes is presented. The rated voltages of each sides of the transformer are 22.9 ㎸ and 6.6 ㎸, respectively The winding of 1MVA HTS transformer is consisted of double pancake type HTS windings, which have advantages of insulation and distribution of high voltage, and are cooled by subcooled liquid nitrogen of 65K. Four HTS tapes were wound in parallel for the windings of low voltage side and the four parallel conductors are transposed. The design of 1MVA HTS transformer, a shell type core made of laminated silicon steel plate is chosen, and the core is separated with the windings by a cryostat with a room temperature bore. The cryostat made of non-magnetic and non-conducting material and a liquid nitrogen sub-cooling system is designed in order to maintain the coolant's temperature of 65K. For electromagnetic analysis of 1MVA HTS transformer, a finite element method of an axis of symmetry is used. The maximum perpendicular component of magnetic flux density of pancake windings is about 0.15T. And through analyzing the magnetic field distribution, an optimal winding arrangement of 1MVA HTS transformer is obtained.

  • PDF

AC loss dependency on the arrangement of the HTS wires in the current limiting module for SFCL (초전도 한류모듈 내 고온초전도 선재 배치에 따른 교류손실 변화)

  • Kim, W.S.;Yang, S.E.;Lee, J.Y.;Kim, H.;Yu, S.D.;Hyun, O.B.;Kim, H.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.9-12
    • /
    • 2012
  • Usually, the AC loss from the superconducting element of an SFCL due to the load current is very small because it is composed of the combination of bifilar windings with very small reactance. Although the AC loss is small enough, we should be albe to predict for the design and control of the cryogenic system. In fact, an SFCL for the transmission voltage class may not generate ignorable AC loss because of the inevitable space between the HTS wires for the high voltage insulation and cryogenic efficiency. To measure the AC loss dependency on the space between the 2G HTS wires with the width of 4.4 mm, we prepared an experimental setup which could adjust the distance between the wires. We used two 500-mm length HTS wires in parallel and applied the current in the opposite direction for each wire to simulate a part of a current limiting module for a high voltage SFCL. We also put two couples of voltage taps at the ends of each wire and a cancel coil in the voltage measurement circuit to compensate the reactive component from the voltage taps. In this condition, we varied the distance between the wires to investigate the change of the transport current loss. A similar experimental study with HTS wire with the width of 12 mm is now in progress.

Current Limiting Characteristics of Flux-Lock Type High-TC Superconducting Fault Current Limiter According to Fault Angles (사고각에 따른 자속구속형 전류제한기의 전류제한특성)

  • Park, Hyoung-Min;Lim, Sung-Hun;Cho, Yong-Sun;Park, Chung-Ryul;Han, Byoung-Sung;Choi, Hyo-Sang;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.12-14
    • /
    • 2004
  • We investigated current limiting characteristics of the flux-lock type high-Tc superconcting fault current limiter(HTSC-FCL) according to fault angles. The Flux-lock type HTSC-FCL consists of primary and the secondary copper coils that are wound in parallel each other through the iron core and YBCO thin flim. In this paper, the current limiting characteristics of the flux-lock type HTSC-FCL according to fault angles in case of the subtractive and additive polarity windings were compared and analyzed. From the results, the flux-lock type HTSC-FCL could limit more quickly fault current as the fault angles increased irrespective of the fault angles. On the other hand, the initial power burden of HTSC element after a fault happened increased as the fault angles increased. In addition, it was confirmed that the resistance of flux-lock type HTSC-FCL in case of subtractive polarity winding was more increased than that of additive polarity winding and that the peak current of fault current in case of subtractive polarity winding was larger than that of the additive polarity winding case.

  • PDF

Operational Characteristics of the High-speed Interrupter for Reliability Enhancement of Power Supply and Demand (전력수급의 신뢰도 확보를 위한 고속 인터럽터 동작 특성)

  • Choi, Hye-Won;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.143-148
    • /
    • 2013
  • When the fault occurs in power system, the fault-current exceeds breaking capacity of the circuit breaker. So, reliablity of the power system is decreased sharply. Superconducting fault-current limiter (SFCL) is operated without impedance in normal state. The fault-current is limited by its impedance during the fault condition. However, the SFCL has several weak points such as huge size, high-price, liquid-nitrogen operation for the real power system. In this paper, We suggested the high-speed interrupter to limit the fault-current in case of the single line-to-ground fault. In addition, we compared the high-speed interrupter with the SFCL to ensure the operation reliability. The proposed interrupter detected the fault-current through the CT, and the power was supplied by operation of the SCR control system. In this experiment, the power of high-speed interrupter was applied after the 4.8[msec] from fault instant. The on-off operation of the interrupter was started after half-cycle from the fault. The fault-current was flowed into the impedance element by the switching operation of the high-speed interrupter. So, the fault current was limited within one cycle, and then it didnt exceed the capacity of a circuit breaker. We confirmed that there was slight difference between the SFCL with high-speed interrupter in terms of limiting-time of the fault-current and switching speed of the SCR. The high-speed interrupter was considered to be more efficient than the SFCL in size, cost or reliability.