• 제목/요약/키워드: Superconducting Conductor (SC)

검색결과 7건 처리시간 0.023초

$\mu$SMES 코일용 초전도도체의 전류용량에 관한 연구 (Study on Current Capacity of the SC Conductor for $\mu$SMES Coil)

  • 김해종;성기철;조전욱;진홍범;류강식;류경우
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제1권1호
    • /
    • pp.22-27
    • /
    • 1999
  • Recently, small-sized superconducting magnetic storage($\mu$SMES) coils become commercially as an energy storage device for a power conditioner. In design and fabrication of the $\mu$SMES coils, to determine optimum current capacity of the superconducting(SC) conductors is one of the important things. We thus investigated the effect of conductor's current capacity, current density, and stability on the coil's maximum stored energy density in consideration of AC losses and switching device's capacities in a power converter. The results show that the smaller current capacity of the SC conductors is preferred for the $\mu$SMES coils but can increase their induced voltage excessively.

  • PDF

초전도 케이블 계통에서의 켄치 모의 및 해석 (Quench Simulation and Analysis on Superconducting Cable Systems)

  • 김남열;이종범
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권1호
    • /
    • pp.13-21
    • /
    • 2004
  • In the design of superconducting cable systems, quench analysis have to be advanced for applying to a real systems. It is necessary to calculate the current, voltage and resistance during the quench. Simulation program named EMTDC was used to analyze the quench state. Normal zone evaluation and quench development with EMTDC are one of the major features of quench analysis. This paper presents the two kinds of quench control models which are the Switch Control Type and the Fortran Control Type. In case of the quench developing area, the simplicity cable model consist of resistance, inductance and capacitance. The impedance of the pipe type superconducting cable is calculated by numerical analysis method. The resistance and inductance increased during quench. However the variation have an effect on the fault current. The voltage was also developed by resistance and inductance. This paper presents the relationship between the current. voltage, resistance and inductance during quench.

$\mu$SMES마그네트용 초전도도체의 안정성 및 퀀치 특성 (Stability and Quench Charcteristics of the SC Conductor for a $\mu$SMES Magnet)

  • 김해종;성기철;조전욱;권영길;류강식;최병주;류경우
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제2권1호
    • /
    • pp.19-23
    • /
    • 2000
  • We are developing a small-sized superconducting magnetic energy storge ($\mu$SMES) magnet with the storage capacity of a few megajoules, which provides electric power with high quality to sensitive electric loads. A kA class superconductor with a high coppe $r^erconductor ratio was selected as a candidate conductor. The superconductor was tested in two points of view, which are basic and important in development of the $\mu$SMES magnet. First, stabilities of the superconductor against localized disturbances such as wire motions were estimated by using a wire heater. Second, the quench current characteristics for different charge rates were also tested. The stability data showed that the short heat pulses made the conductor more unstable. The superconductor had relatively high recovery currents ranging between 40% and 50% of its critical currents. The quench tests indicated that the quench currents of the conductor were independent of current ramp rates up to 3000 A/s and nearly equal to its cuitical current data.ta.

  • PDF

Numerical investigations on the effect of tortuosity on friction factor in superconducting CICC configuration

  • Vaghela, Hitensinh;Lakhera, Vikas;Bhatt, Kunal;Sarkar, Biswanath
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권4호
    • /
    • pp.49-55
    • /
    • 2021
  • The Cable in Conduit Conductor (CICC) configurations are designed, tested and realized to make high field superconducting (SC) magnets. The evolution of CICC design makes it challenging to forecast thermo-hydraulic behavior. A common objective of thermo-hydraulic studies is to obtain the most reliable predictive correlation for friction factor in CICC geometries and to reduce the dependency on the experiment. So far, only the void fraction and Reynolds number have been considered in the predictive correlations in an explicit way. In the present paper, the CICC twisting pattern dependency, called tortuosity (τ), on the pressure drop prediction, has been assessed through a numerical simulation approach. The CICC twisting pattern with 6+1 petals (solid conductor in the present study) with different twisting pitches is mimicked in the numerical simulation for the range 100 ≤ Re ≤10000 and 1 < τ < 1.08 and a correlation for friction factor, f, has been proposed as a function of Re and τ.

Analysis Stability of Cable-In-Conduit-Conductor with NbTi Superconducting Strands of Various Cu/SC Ratios Used in PF6 of KSTAR

  • Qiuliang Wang;Kim, Myungkyu;Yoon, Cheon-Seong;Lee, Sangil;Kim, Keeman
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.53-56
    • /
    • 2001
  • The stability of PF 6-7 has been studied according to the transient analysis code TOKSCPF and quench analysis code QSAIT. We compare the stability and temperature rise with various Cu/SC ratios of 2.8 and 3.5 under the KSTAR normal operating conditions. It shows that the Cu/SC ratio has an influence on the quench propagation and stability margin. In transient operating condition, the Cu/SC ratio weakly influences on the temperature rise in PF magnet.

  • PDF

100 m급 Bi-2223 고온초전도 선재 제조 및 특성 (Fabrication and performance of 100 m Class Bi-2223 High Temperature Superconducting Tape)

  • 하홍수;오상수;하동우;장현만;이남진;류강식;이준석
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제1권2호
    • /
    • pp.15-19
    • /
    • 1999
  • For large scale applications of high temperature superconductor (HTS) such as transmission cables, motors and generators, long length of flexible HTS conductor is required. Currently, Bi-2223 HTS tape is capable of being fabricated in longer than 100 m length by industrial processes. In this study, we fabricated 100 m 19 filamentary Bi-2223 ($Bi_{1.8}Pb_{0.4}Sr_2Ca_2O_{10+x}$) HTS tape by PIT (Power in Tube) process. Critical current(IC) of this long length tape was measured 18.5 A at 77K, self field. Critical current of 100 m length tape was mainly resulted from the increase of inhomogeneity in oxide from the increase of inhomogeneity in oxide layer. Engineering critical current (Je=Ic/total tape cross-section area) that is important factor for practical applications and fabrication cost was measured 2.2 kA/cm2.

  • PDF

$\mu$ SMES용 초전도도체의 회복전류 특성 (Recovery Current Characteristics of the SC conductor for a $\mu$ SMES)

  • 김해종;성기철;조전욱;이언용;권영길;류강식;류경우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.807-809
    • /
    • 2000
  • We are developing a small-sized superconducting magnetic energy storage ($\mu$ SMES) magnet with the storage capacity of a few megajoules, which provides electric power with high quality to sensitive electric loads. As the earlier step of the fabrication of the $\mu$ SMES magnet, this paper describes recovery current experimental results of a kA class superconductor. Recovery current of a superconductor was tested in two points of copper ratio and cooling effect.

  • PDF