• 제목/요약/키워드: Superconducting Coil

검색결과 403건 처리시간 0.035초

Effective 3-D FEM for large-scale high temperature superconducting racetrack coil

  • Huang, Xiangyu;Huang, Zhen;Xu, Xiaoyong;Li, Wan;Jin, Zhijian
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권3호
    • /
    • pp.32-37
    • /
    • 2019
  • In various types of large-scale electrical applications, the number of coil turns in such machines is usually large. Electromagnetic simulation of large-scale superconducting coils (tens to hundreds of turns) is indispensable in the design process of superconducting electrical equipment. However, due to the large scale of the coil and the large aspect ratio of super-conducting material layer in HTS coated conductor, it is usually difficult or even unable to perform 3-D transient electromagnetic simulation. This paper introduces an effective 3-D electromagnetic simulation method for large-scale HTS coated conductor coil based on T-A formulation. The simulation and experimental results show that the 3-D model based on the T-A formulation using homogeneous strategy is more accurate than the traditional 2-D models. The memory usage is not sensitive to the number of turns and this model will be even more superior as the number of turns becomes larger.

물질분리를 위한 전도냉각형 초전도자석 시스템 개발 (Development of a Conduction-Cooled Superconducting Magnet System for Material Separation)

  • 최연석;김동락;이병섭;양형석;정원묵
    • Progress in Superconductivity
    • /
    • 제10권1호
    • /
    • pp.50-54
    • /
    • 2008
  • A conduction-cooled superconducting magnet system is developed for material separation. The superconducting magnet for material separation has to be designed to have a strong magnetic field in a control volume. Since the magnetic field gradient is larger at the end rather than at the center of the magnet, we developed a design method to optimize the superconducting magnet for material separation. The safety of the superconducting magnet is evaluated, taking into account the electro-magnetic field, heat and structure. The superconducting coil is successfully wound by the wet-winding method. The superconducting coil is installed in a cryostat maintaining high vacuum, and cooled down to approximately 4 K by a two-stage GM cryocooler. The performance of the conduction-cooled superconducting magnet system is discussed with respect to the supplied current, cooling medium and cooling power of a cryocooler.

  • PDF

배전급 초전도 한류기 개발을 위한 Bi-2212 초전도 한류소자의 사고전류 제한 특성 (Fault Current Limitation Characteristics of the Bi-2212 Bulk Coil for Distribution-class Superconducting Fault Current Limiters)

  • 심정욱;이해근;임성우;김혜림;현옥배;박권배;이방욱;오일성;김호민
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.277-281
    • /
    • 2007
  • We investigated fault current limitation characteristics of the resistive superconducting fault current limiter (SFCL) which consisted of a Bi-2212 bulk coil and a shunt coil. The Bi-2212 bulk coil and the shunt coil were connected in parallel. The Bi-2212 bulk coil was placed inside the shunt coil to induce field-assisted quench. The fault test was conducted at an input voltage of $200V_{rms}$ and fault current of $12kA_{rms}\;and\;25kA_{rms}$. The fault conditions were asymmetric and symmetric, and the fault period was 5 cycles. The test results show that the SFCL successfully limited the fault current of $12kA_{rms}\;and\;25kA_{rms}$ to below $5.5{\sim}6.9kA_{peak}\;within\;0.64{\sim}2.17$ msec after the fault occurred. Limitation was faster under symmetric fault test condition due to the larger change rate of current. We concluded that the speed of fault current limitation was determined by the speed of current rise rather than the amplitude of a short circuit current. These results show that the Bi-2212 bulk coil is suitable for distribution-class SFCLS.

Conductive link between cryocooler and magnet in cryogen-free LTS magnet system

  • Choi, Yeon Suk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권4호
    • /
    • pp.59-62
    • /
    • 2013
  • The conductive link is used as a cooling medium between a cryocooler and magnet in a cryogen-free superconducting magnet system. The low temperature superconducting (LTS) magnet has one solenoidal configuration with a metal former which has a 52 mm room temperature bore. The superconducting coil is installed in the cryostat maintaining high vacuum and cooled by a two-stage cryocooler. In order to maintain the operating temperature of magnet at the designed level, the cold head temperature of the cryocooler must be lower so that heat can be removed from the superconducting coil. Also, temperature difference is occurred between the magnet and cryocooler and its magnitude is dependent upon the contact resistance at the interfacial surface between metals in the conductive link. In the paper, the performance of the LTS magnet is investigated with respect to the conductive link between the magnet former and the cold head of the cryocooler. The effects of the contact pressure and interfacial materials on the temperature distribution along the conductive link are also presented.

두 번의 피크전류제한 기능을 갖는 변압기형 초전도한류기의 과도전류제한 동작 특성 연구 (Study on Transient Current Limiting Operational Characteristics of Transformer Type SFCL with Two Peak Current Limiting Function)

  • 한태희;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제29권8호
    • /
    • pp.499-504
    • /
    • 2016
  • In this paper, we analyzed the operational characteristics of the fault current limiting according to the amplitude of the fault current for the transformer type superconducting fault current limiter (SFCL). If the fault current happens, the superconducting element connected to the secondary coil is occurred quench and the fault current is limited. When the larger fault current occurs, the superconducting element connected to the third coil is occurred additional quench and the peak fault current is limited. We found that the fault current can be more effectively controlled through the analysis of the fault current limiting and the short-circuit tests.

개선된 자속구속형의 2차 측 권선 방향과 1차 권선수와 2차 권선수의 변화에 따른 사고전류제한 특성 (Current Limiting Characteristics of Improved Flux-Lock Type SFCL According to Winding Direction of Coil 2 and Variable Number of Coil 1 and Coil 2)

  • 김용진;두호익;이동혁;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제23권9호
    • /
    • pp.714-717
    • /
    • 2010
  • The improved flux-lock type superconducting fault current limiter (SFCL) is composed of a series transformer and superconducting unit of the yttrium-barium-copper-oxide (YBCO) coated conductor. In this paper, we investigated current limiting characteristics through winding direction of coil 2 and variable number of coil 1 and coil 2 in improved flux-lock type SFCL. The better fault current characteristics and the burden of YBCO coated conductor can be confirmed from the experimental result in the higher turn ratio of coil 1 and coil 2 in the additive conditions. In case of subtractive condition, we can confirm a similar result in the same case of experimental conditions. but the burden of YBCO coated conductor has been increased from an increase in winding numbers of coil 2.

솔레노이드형 고온초전도코일 모의전극계에서 부분 및 완전파괴전압특성 연구 (A Study of PBD and BD Voltage Characteristics in the Simulate Electrode System of Solenoid Type High Temperature Superconducting Coils)

  • 석복렬
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권1호
    • /
    • pp.94-98
    • /
    • 2002
  • The Partial breakdown (PBD) and complete breakdown (BD) voltage characteristics in a composite insulation system of glass fiber reinforced plastics (GFRP) and liquid nitrogen are investigated to find the PBB and BD characteristics in solenoid type high temperature superconducting (HTS) coils at quench. The electrode system used is made from a coaxial spiral coil-to-cylindrical electrode with an insulation barrier and spacers, and is immersed in liquid nitrogen. A heater is mounted inside the coil electrode to generate boiling which occurs on quenched superconducting coils. The experimental results show that: (1) breakdown voltages are affected severely by the risetime of the applied voltage and the PBD inception voltage, (2) two kinds of BD mechanisms are found depending on the shape of the spacer, length of cooling channel and heater power.

리니어타잎 초전도 전원장치의 동작특성 (Operating characteristics of linear type magnetic flux pump)

  • 정윤도;배덕권;윤용수;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.665-666
    • /
    • 2008
  • Inserted HTS (high temperature superconducting) coil is promisingly expected as a solution for achievement of higher fields such as GHz scale NMR magnet. However, HTS magnet causes persistent current decay in the persistent current mode and this decay should be compensated in order to keep stable magnetic field. As a solution for the decay in the HTS magnets, we proposed a new type superconducting power supply, i.e., linear type magnetic flux pump (LTMFP). The LTMFP mainly consists of DC bias coil, 3-phase AC coil and superconducting Nb foil. The compensating current in closed superconductive circuit can be easily controlled by the intensity of 3-phase AC current and its frequency. In this study, it has been investigated that the flux pump can effectively charge the current for various frequencies according to the different load magnets.

  • PDF

모듈화된 계자코일을 가지는 12 MW급 초전도 발전기의 고장 특성 분석 (Fault characteristic analysis of a modularized HTS field coil-based 12 MW class SCSG)

  • 고병수;성해진;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1108-1109
    • /
    • 2015
  • In general, when a high-temperature superconducting (HTS) field coil breaks down, the overall field coils of a superconducting synchronous generator (SCSG) are also stopped working, because of the HTS field coils are connected in series. Therefore, the HTS field coils have to be modularized. The modularized HTS field coil is operated individually. Therefore, even if the HTS field coils are broken-down, the generator still operates under the fault conditions. But the output power and torque of the generator will be affected. This paper deals with the fault characteristics analysis of a 12 MW class SCSG with the modularized HTS field coils when the coils were broken-down. The steady-state and transient state characteristics of the modularized 12 MW class SCSG were analyzed and compared. The fault characteristics analysis results of the 12 MW class superconducting generator for the wind turbines were discussed in detail.

  • PDF

전력용 고온초전도 코일 모의전극계에서의 기포거동에 관한 연구 (Study on Bubble Behavior with the Simulated Electrode System of High Temperature Superconducting Coils for Electric Power System)

  • 석복렬;김종구
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권1호
    • /
    • pp.16-21
    • /
    • 2001
  • Bubble behavior is studied with an electrode system which consists of coaxial spiral coil-to-cylindrical electrode with an insulation barrier and spacers and is immersed in liquid nitrogen for simulation of insulation environments in high temperature superconducting(HTS) coils The results show that the bubble behavior Is affected severely by electric field: (1) under low applied voltage bubbles rise by buoyancy, but at higher applied voltage they are trapped in a lower electric field region below the coil electrode, and (2) the trapped bubble flows along the downside of coil electrode if no obstruction is in a groove between coil turns. but it splashes out of the groove after its growing if the obstruction such as spacer-exists.

  • PDF