• Title/Summary/Keyword: Supercapacitor,

Search Result 376, Processing Time 0.025 seconds

The Operation Characteristics of Hybrid Supercapacitor Module for LED Emergency Luminaires (LED 비상 유도등을 위한 하이브리드 슈퍼커패시터 모듈의 동작 특성)

  • Mang, Ju-Cheul;Yoon, Jung-Rag
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.473-479
    • /
    • 2015
  • Hybrid supercapacitors with high power density and long cycle life are widely used for emergency power source of LED emergency luminaires. In this paper, we designed and fabricated a hybrid capacitor cell and a module for the LED emergency luminaires. Using hybrid supercapacitor cells (1,000 F, 2.8 V), we designed a module in a 10-year warranty considering aging and ESR. Considering the ESR and efficiency has been designed to module with 1,000 F 5.6 V design results in 2 series and 2 parallel combination. Module was used to confirm that the operation 77.5 minutes at room temperature, discharge LED emergency luminaires with 2 W. As a LED emergency luminaires of emergency power supply that we can support more than 10 years of life was confirmed the applicability of hybrid supercapacitor.

Operating Characteristics Analysis of Bidirectional DC/DC Converter in Idling Mode of Fuel Cell - Supercapacitor Combined System (연료전지와 슈퍼커패시터가 결합된 발전시스템의 대기모드에서 양방향 DC-DC 컨버터의 특성해석)

  • Lee, Jong-Gyu;Song, Woong-Hyub;Kim, Jin-Young;Nho, Eui-Cheol;Kim, In-Dong;Kim, Heung-Geun;Chun, Tae-Won
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.13-14
    • /
    • 2011
  • This paper deals with the ZVS characteristics of a bidirectional DC/DC converter in idling mode. Simulations are carried out with the supercapacitor which maximum voltage is 50 V. It is found that the ZVS can be achieved as far as the supercapacitor voltage is below 94% of the maximum voltage in idling mode. Therefore, the switching loss in the mode can be small by control the upper limit of the supercapacitor voltage.

  • PDF

A Study on the Characteristics of Supercapacitpr Module for High Voltage System (고전압 시스템을 위한 초고용량 축전지 모듈 특성 연구)

  • Kim, Byeong-Woo;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1237-1241
    • /
    • 2010
  • Supercapacitors as novel energy storage devices between conventional capacitors and batteries, with more specific capacitance and energy densities than conventional capacitors and more power densities than batteries are to be used in many fields. Supercapacitor is regarded as one of good alternatives for meeting the requirement of market with excellent power performance and high cyclability. This paper deals with the characteristics of charge and discharge behavior of supercapacitor module for developing 42V hybrid energy storage system with lead acid battery and supercapacitor in order to adopt to 42V power net for vehicle. An analysis performed in this paper indicates that supercapacitor storage system may be cost effective for high cycle applications.

Charge/discharge Properties of $V_{2}O_{5}$ Composite with different Voltage range for Supercapacitor (Supercapacitor용 $V_{2}O_{5}$ Composite의 전압영역에 따른 충방전 특성)

  • 김명산;김종욱;구할본;박복기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.507-510
    • /
    • 2000
  • The purpose of this study is to research and developV$_2$O$_{5}$-SP270 composite electrode for supercapacitor. Property of an electrical double layer capacitor depend both on the technique used to prepare the electrode and on the current collector structure. The study is to research that V$_2$O$_{5}$-carbon composite electrode for supercapacitor with different voltage range. Suprcapacitor cell of V$_2$O$_{5}$-SP270 composite electrode with 25PVDFLiC1O$_4$PC$_{10}$ polymer electrolyte bring out good capacitor performance below 3V. The discharge capacitance of SP270 in 1st cycles was 13F/g at 0.1mA/cm$^2$, 3V. We performed cycle voltammogram, charge/discharge property.y.rty.y.

  • PDF

Preparation of polythiophene electrode and it's application for supercapacitor (폴리싸이오펜전극의 제조와 수퍼커패시터로서의 응용)

  • ;;Katsuhiko Naoi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.573-576
    • /
    • 2001
  • In the research fields of energy storage, and more specifically of supplying high powers, electrochemical supercapacitor have been among the most studied systems for many years. One of the possible applications is in electric vehicles. We have been working on electronically conducting polymers for use as active materials for electrodes in supercapacitors. These polymers have the ability of doping and undoping with rather fast kinetics and have an excellent capacity for energy storage. polythiophene (Pth) and polyparafluorophenylthiophene (PFPT) have been chemically synthesized for use as active materials in supercapacitor electrodes. Electrochemical characterization has been performed by cyclic voltammetry and an electrode study has been achieved to get the maximun capacity out of the polymers and give good cyclability. specific capacity values of 7mAh/g and 40mAh/g were obtained for PFPT and polythiophene, respectively. Supercapacitors have been built to characterize this type of system. Energy storage levels of 260F/g were obtained with Pth and 110F/g with PFPT

  • PDF

Graphene Oxide based Metal ion Hybrid Supercapacitor (산화그라핀 및 금속 이온 결합체를 이용한 슈퍼커패시터 특성 연구)

  • Jung, Youngmo;Jun, Seong Chan
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • In this paper we are presenting a architecture of Co ion decorated graphene oxide as an electrode for supercapacitor application. Graphene oxide, which is exfoliated by oxidant from graphite, is the material for solving the problem of mass production and coating on the surface of working electrode. The $Co^{2+}$ ions are coated by using layer by layer(LBL) method on graphene oxide foam. The metal ion decorated graphene oxide shows enhanced capacitance performance when tested as supercapacitor electrode, showing the specific capacitance of $827Fg^{-1}$.

A Seamless Control Method for Supercapacitor to Compensate Pulse Load Transients in DC Microgrid

  • Dam, Duy-Hung;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.198-199
    • /
    • 2017
  • This paper proposed a new control method for supercapacitor (SC) to compensate the pulse load transient and enhance the power quality of dc microgrid. By coordinating the operation frequency, the supercapacitor is controlled to handle the surge current component while the low-frequency current component is dealt with by remaining sources in the system. Based on the state of charge and dc bus voltage level, the SC unit operation mode is automatically decided. Meanwhile, the dc bus voltage level indicates the power demand of the whole system; by regulating the dc bus voltage, the mismatch of power demand is covered by SC unit. The effectiveness of proposed method is verified by experiment prototype formed by two distributed generation and one supercapacitor unit.

  • PDF

Charge/discharge Properties of PFPT-flyash Electrodes for Supercapacitor (Supercapacitor용 PFPT-flyash 전극의 충방전 특성)

  • Kim, Jong-Uk;Wee, Sung-Dong;Jeon, Yeon-Su;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.91-94
    • /
    • 2003
  • The purpose of this project is to research and development of thin film supercapacitor with conducting polymer composite electrodes and polymer electrolyte which have high energy density for thin film supercapacitor. We investigated cyclic voltammetry and charge/discharge cycling of PFPT-flyash electrodes. The first discharge capacity of PFPT-flyash electrode with 40wt.% flyash was 24F/g, while that of PFPT-VOflyash electrode with 40wt.% VOflyash was 32F/g. The capacitance of PFPT-VOflyash composite film with polymer electrolyte was 32 F/g at 1st and 20th cycle, respectively. The capacitance of PFPT-VOflyash/Li cell with 40 wt% VOflyash was 141 F/g at 8th cycle.

  • PDF

Charge/discharge Properties of $V_2O_5$-AC Composite for Supercapacitor (Supercapacitor용 $V_2O_5$-AC Composite의 충방전 특성)

  • 김명산;김종욱;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.366-369
    • /
    • 1999
  • The purpose of this study is to research and develop V2Os-AC(activated carbon) composite electrode for supercapacitor. Supaercapacitor cell of V2Os-AC composite electrode with 25P70FLiCIO$_{4}$/PC$_{10}$/EC$_{10}$ polymer electrolyte bring out good capacitor Performance below 3V. The discharge capacitance of V2Os-AC(30:70) composite with 70wt.% AC in 1st and 200th cycles was 9.6 and 8.2 F/g at current density of 1m7/cm2. The capacitance of V$_2$O$_{5}$-AC composite with 70wt.% AC capacitor was larger than that of others. The coulombic efficiency of supercapacitor at discharge process of 1 and 200 cycles were 96 and 100%, respectively. V$_2$O$_{5}$-AC composite supercapacitor with 70wt.% AC content showed good capacitance and stability with cycling.ing.ing.

  • PDF