• Title/Summary/Keyword: Supercapacitor,

Search Result 376, Processing Time 0.028 seconds

Fabrication and Characterization of Thin Film Supercapacitor using $WO_3$ ($WO_3$를 이용한 박막형 슈퍼캐패시터의 제작 및 특성 평가)

  • 신호철;신영화;임재홍;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.575-578
    • /
    • 2000
  • In this work, all solid-state thin film supercapacitor(TFSC) was fabricated using tungsten trioxide (WO$_3$) with a structure WO$_3$/LiPON/WO$_3$/Pt/TiO$_2$/Si (substrate). After TiO$_2$ was deposited on Si(100) wafer by d.c. reactive sputtering, the Pt current collector films were grown on TiO$_2$glue layer without breaking vacuum by d.c. sputtering. Fabrication conditions of WO$_3$ thin film were such that substrate temperature, working pressure, gas ratio of $O_2$/Ar and r.f. power were room temperature, 5 mTorr, 20% (O$_2$(8sccm)/Ar(32sccm)) and 200W, respectively. LiPON electrolyte film were grown on the WO$_3$ film using r.f. magnetron sputtering at room temperature. The XRD pattern of the as-deposited WO$_3$ thin film were shown no crystalline peak (amorphous). The SEM image of as-deposited WO$_3$ thin film showed that the surface is smooth and uniform. The capacitiy of as-fabricated TFSC was 0$\times$10$^{-2}$ F/$\textrm{cm}^2$-${\mu}{\textrm}{m}$.

  • PDF

Fabrication of Mesoporous Carbon from Polyvinylidene Chloride(PVDC)-resin Precursor with Mg(OH)2 Template for Supercapacitor Electrode (슈퍼 커패시터용 전극을 위한 Polyvinylidene chloride(PVDC)-resin과 Mg(OH)2 템플릿으로부터 메조기공 탄소의 제조)

  • Hwang, Beodl;Chun, Sang-Eun
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.326-333
    • /
    • 2019
  • The microporous carbon derived from PVDC-resin by a simple heat-treatment under an inert atmosphere exhibits a reasonable specific capacitance for a supercapacitor's electrode. However, the capacitance was rapidly decreased at high charge/discharge rate. The micropores present in an electrode surface hinder the entrance of an electrolyte ion onto the entire surface. To induce the meso-sized pores during the carbonization of PVDC-resin, Mg(OH)2 was utilized as a hard template. The porous carbon made from the mixture of PVD-Cresin and Mg(OH)2 include mesopores as well as micropores. The induced mesopores does not homogeneously distributed on the entire surface of the synthesized carbon. The PVDC-resin and Mg(OH)2 are dissolved in the dimethylformamide for the hard template to evolve the pores on the synthesized carbon uniformly. The carbon made from PVDC-resin with solvent and a hard template contains mostly mesopores resulting in the high power performance. The reduced amount of solvent in the precursor derives the carbon with high specific surface area and high power density.

A Facile synthesis of CoS by Successive Ionic Layer Adsorption and Reaction (SILAR) Process for Supercapacitors (스테인리스강 기판에 연속 이온 층 흡착 및 반응 (SILAR) 공정을 통한 CoS 코팅 및 슈퍼캐패시터 전극 특성)

  • Kim, Jaeseung;Lee, Jaewon;Kumbhar, Vijay S.;Choi, Jinsub;Lee, Kiyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.130-137
    • /
    • 2019
  • In this study, the cobalt sulfide (CoS) nanosheet on stainless steel as a supercapacitor electrode is synthesized by using a facile successive ionic layer adsorption reaction (SILAR) method. The number of cycles for dipping and rinsing can control the nanosheet thickness of CoS on stainless steel. Field emission-scanning electron microscopy (FE-SEM) showed a layer structure of CoS particles coupled as agglomeration. And x-ray diffraction (XRD) showed the crystallinity of the CoS nanosheet. To investigate the characteristics of the CoS nanosheet electrode as the supercapacitor, analysis of electrochemical measurement was conducted. Finally, the CoS nanosheet of 70cycles on stainless steel shows the specific capacitance ($44.25mF/cm^2$ at $0.25mA/cm^2$) with electrochemical stability of 78.5% over during 2000cycles.

High Temperature Supercapacitor with Free Standing Quasi-solid Composite Electrolytes (독립형 반고체 복합 전해질을 적용한 고온 수퍼커패시터)

  • Kim, Dong Won;Jung, Hyunyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.121-128
    • /
    • 2019
  • Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At $175^{\circ}C$, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.

Effect of Hydrogen in Rapid Thermal Annealing on the Graphene-Zinc Oxide Electrode for Supercapacitor (슈퍼커패시터용 그래핀-산화아연 전극의 급속열처리에서 수소의 영향)

  • Jeong, Woo-Jun;Oh, Ye-Chan;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.123-129
    • /
    • 2019
  • With recent demand for the renewable energy resources, we conducted a research on the energy conversion and storage device of supercapacitor. The hybrid graphene-zinc oxide(GZO) electrodes for the supercapacitors (SCs) were fabricated and investigated. To increase the electrical conductivity of the GZO electrode, the rapid thermal annealing(RTA) in $Ar/H_2$(10%) atmosphere was applied and the effect was examined by comparing it with RTA at Ar atmosphere. In Raman spectroscopy, the electrodes annealed at 400? in $Ar/H_2$ atmosphere showed a lower ratio of D/G peak than that of annealed at Ar atmosphere, and had a larger specific capacitance(Sc) in the cyclic voltammetry(CV), and a lower the equivalent series resistance(ESR) in the electrochemical impedance spectroscopy(EIS). The reason seems to come from the better mixing of the graphene and zinc oxide by the RTA in $Ar/H_2$(10%).

The Small Photovoltaic power supply using Hybrid Supercapacitor (하이브리드 커패시터를 적용한 소형 태양광 전원장치)

  • Kim, Tae-Yeop
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.826-831
    • /
    • 2019
  • The stand-alone photovoltaic power systems are widely used for lighting equipment and CCTV. In order for these devices to be competitive, the life of power storage devices such as batteries is very important. The characteristic Hybrid supercapacitor is the high power density and long life. We have proposed a stand-alone photovoltaic power system that uses hybrid supercapacitor. The charge and discharge characteristics and the internal resistance of the hybrid capacitor were measured to configure the power converter. A stable maximum output point tracking control algorithm is proposed even with the change in solar radiation. In order to verify the validity of the proposed system, a prototype was fabricated and tested using a 18W hybrid capacitor and a 10W solar cell.

An investigation into energy harvesting and storage to power a more electric regional aircraft

  • Saleh, Ahmed;Lekakou, Constantina;Doherty, John
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.17-30
    • /
    • 2021
  • This is an investigation for a more electric regional aircraft, considering the ATR 72 aircraft as an example and the electrification of its four double slotted flaps, which were estimated to require an energy of 540 Wh for takeoff and 1780 Wh for landing, with a maximum power requirement of 35.6 kW during landing. An analysis and evaluation of three energy harvesting systems has been carried out, which led to the recommendation of a combination of a piezoelectric and a thermoelectric harvesting system providing 65% and 17%, respectively, of the required energy for the actuators of the four flaps. The remaining energy may be provided by a solar energy harvesting photovoltaic system, which was calculated to have a maximum capacity of 12.8 kWh at maximum solar irradiance. It was estimated that a supercapacitor of 232 kg could provide the energy storage and power required for the four flaps, which proved to be 59% of the required weight of a lithium iron phosphate (LFP) battery while the supercapacitor also constitutes a safer option.

Facile Electrodeposition Technique for the Fabrication of MoP Cathode for Supercapacitor Application

  • Samanta, Prakas;Ghosh, Souvik;Murmu, Naresh Chandra;Lee, Joong Hee;Kuila, Tapas
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.345-349
    • /
    • 2021
  • The continued environmental pollution caused by fossil fuel consumption has prompted researchers around the world to develop environmentally friendly energy technologies. Electrochemical energy storage is the significant area of research in this development process, and the research significance of supercapacitors in this field is increasing. Herein, a simple electrodeposition synthetic route was explored to develop the MoP layered cathode material. The layered structure provided a highly ion-accessible surface for smooth and faster ion adsorption/desorption. After Fe was doped into MoP, the morphology of MoP changes and the electrochemical performance was significantly improved. Specific capacitance value of the binder-free FeMoP electrode was found to be 269 F g-1 at 2 A g-1 current density in 6 M aqueous KOH electrolyte. After adding Fe to MoP, an additional redox contribution was observed in the redox conversion from Fe3+ to Fe2+ redox pair, and the charge transfer kinetics of MoP was effectively improved. This research can provide guidance for the development of supercapacitor electrode materials through simple electrodeposition technology.

Preparation of flexible energy storage device based on reduced graphene oxide (rGO)/conductive polymer composite (환원된 그래핀 옥사이드/전도성 고분자 복합체를 이용한 플렉시블 에너지 저장 매체의 개발)

  • Jeong, Hyeon Taek;Cho, Jae Bong;Kim, Jang Hun;Kim, Yong Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.280-288
    • /
    • 2017
  • Nanocarbon base materials such as, graphene and graphene hybrid with high electrochemical performances have great deal of attention to investigate flexible, stretchable display and wearable electronics in order to develop portable and high efficient energy storage devices. Battery, fuel cell and supercapacitor are able to achieve those properties for flexible, stretchable and wearable electronics, especially the supercapacitor is a promise energy storage device due to their remarkable properties including high power and energy density, environment friendly, fast charge-discharge and high stability. In this study, we have fabricated flexible supercapacitor composed of graphene/conductive polymer composite which could improve its electrochemical performance. As a result, specific capacitance value of the flexible supercapacitor (unbent) was $198.5F\;g^{-1}$ which decreased to $128.3F\;g^{-1}$ (65% retention) after $500^{th}$ bending cycle.

Fabrication and analysis of electrochemical performance for energy storage device composed of metal-organic framework(MOF)/porous activated carbon composite material (금속유기골격체(Metal-organic Framework) 소재가 첨가된 다공성 활성탄소 복합재료 전극 기반의 에너지 저장 매체 제조 및 전기화학적 특성 분석)

  • Lee, Kyu Seok;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.260-267
    • /
    • 2020
  • In this study, supercapacitor based on the all solid state electrolyte with PVA(polyvinyl alcohol), ionic liquid as a BMIMBF4(1-buthyl-3-methylimidazolium tetrafluoroborate) and activated carbon/Ni-MOF composite was fabricated and characterized its electrochemical properties with function of MOF. In order to analysis and comparison that electrochemical performances [including cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge test] of prepared supercapacitor based on activated carbon/Ni-MOF composite and all solid state electrolyte. As a result, specific capacitance of the supercapacitor without Ni-MOF was 380 F/g which value decreased to 340 F/g after adding Ni-MOF to activated carbon as a electrode material. This result exhibited that decreased electrochemical property of the supercapacitor effected on physical hinderance in the electrode. In further, it needs to optimization of the Ni-MOF amount (wt%) in the electrode composite to maximize its electrochemical performances.