• Title/Summary/Keyword: Superbond C&B

Search Result 28, Processing Time 0.021 seconds

A STUDY ON THE SHEAR BOND STRENGTH BETWEEN RESIN-BONDED RETAINERS AND ENAMEL ACCORDING TO THE ADHESIVE RESINS AND RETENTION TYPES (유지형태와 접착제 종류에 따른 수지 접착형 수복물과 법랑질간의 전단결합강도 및 파절양상에 관한 연구)

  • Cho, Mi-Sook;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.662-684
    • /
    • 1995
  • The purpose of this study was to evaluate the shear bond strength between various resin-bonded retainers and enamel according to the adhesive resins and retention types and observe the bond filure modes with scanning electron microscope(SEM). For this purpose, the followin eight sub-groups were tested in shear bond strength : 1) electrochemically etched group(Verabond) using Panavia EX and Superbond C&B 2) tin-plated group(PG-S) using Panavia EX and Superbond C&B 3) salt-treated group(Verabond) using Panavia EX and Superbond C&B 4) meshtreated group(Verabond) using Panavia EX and Superbond C&B. Thermocycling test was conducted on the condition of 15 second dwell time each in $5^{\circ}C$ and $55^{\circ}C$bath. Shear bond strength was measured by Instron Universal Testing Machine(medel 1125). The obtained results were as follows : 1. After thermocycling, the shear bond strengths of tin-plated group and electrochemically etched group were significantly greater than those of salt-treated group and mesh-treated group. And the shear bond strength of Panavia EX was greater than that of Superbond C&B with salt-treated group and tin-plated group(p<0.05). 2. Before thermocycling, electrochemically etched group using Superbond C&B produced the greatest shear bond strength(p<0.01). 3. The shear bond strength of electrochemically etched group using Superbond C&B was significantly decreased after thermocycling(p<0.01). 4. In observation of bond failure modes before thermocycling, Panavia EX highly exhibited enamel fracture. Tin-plated group using Superbond C&B adhesive failure between metal and resin and electrochemically etched group using Superbond C&B exhibited adhesive failure between enamel and rdsin. 5. In observation of failure modes after thermocycling, Panavia EX exhibited cohesive failure and Superbond C&B exhibited adhesive failure between resin and metal.

  • PDF

The effect of resin cements and primer on retentive force of zirconia copings bonded to zirconia abutments with insufficient retention

  • Kim, Seung-Mi;Yoon, Ji-Young;Lee, Myung-Hyun;Oh, Nam-Sik
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.198-203
    • /
    • 2013
  • PURPOSE. The purpose of this study was to investigate the effect of resin cements and primer on the retentive force of zirconia copings bonded to zirconia abutments with insufficient retention. MATERIALS AND METHODS. Zirconia blocks (Lava, 3M ESPE, St. Paul, MN, USA) were obtained and forty sets of zirconia abutments and copings were fabricated using CAD/CAM technology. They were grouped into 4 categories as follows, depending on the types of resin cements used, and whether the primer is applied or not:Panavia F2.0 (P), Panavia F2.0 using Primer (PRIME Plus, Bisco Inc, Schaumburg, IL, USA) (PZ), Superbond C&B (S), and Superbond C&B using Primer (SZ). For each of the groups, the cementation was conducted. The specimens were kept in sterilized water ($37^{\circ}C$) for 24 hours. Retentive forces were tested and measured, and a statistical analysis was carried out. The nature of failure was recorded. RESULTS. The means and standard deviations of retentive force in Newton for each group were $265.15{\pm}35.04$ N (P), $318.21{\pm}22.24$ N (PZ), $445.13{\pm}78.54$ N (S) and $508.21{\pm}79.48$ N (SZ). Superbond C&B groups (S & SZ) showed significantly higher retentive force than Panavia F2.0 groups (P & PZ). In Panavia F2.0 groups, the use of primer was found to contribute to the increase of retentive force. On the other hand, in Superbond C&B groups, the use of primer did not influence the retention forces. Adhesive failure was observed in all groups. CONCLUSION. This study suggests that cementation of the zirconia abutments and zirconia copings with Superbond C&B have a higher retentive force than Panavia F2.0. When using Panavia F2.0, the use of primer increases the retentive force.

EFFECT OF SURFACE TREATMENT METHODS ON THE SHEAR BOND STRENGTH OF RESIN CEMENT TO ZIRCONIA CERAMIC

  • Lee, Ho-Jeong;Ryu, Jae-Jun;Shin, Sang-Wan;Sub, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.743-752
    • /
    • 2007
  • Statement of problem. The aims of the study were to evaluate the effect of current surface conditioning methods on the bond strength of a resin composite luting cement bonded to ceramic surfaces and to identify the optimum cement type. Material and methods. The sixty zirconia ceramic specimens(10 per group) with EVEREST milling machine and 60 tooth block were made. The zirconia ceramic surface was divided into two groups according to surface treatment: (1) airborne abrasion with $110{\mu}m$ aluminum oxide particles; (2) Rocatec system, tribochemical silica coating. The zirconia ceramic specimens were cemented to tooth block using resin cements. The tested resin cements were Rely X ARC, Panavia F and Superbond C&B. Each specimen was mount in a jig of the universal testing machine for shear strength. The results were subjected to 2-way ANOVA and Post hoc tests was performed using Tukey, Scheffe, and Bonferroni test. Results. The mean value of shear bond strength(MPa) were as follows: $$RelyXARC(+Al_2O_3),5.35{\pm}1.69$$; $$RelyXARC(+Rocatec),8.50{\pm}2.13$$; $$PanaviaF(+Al_2O_3),9.58{\pm}1.13$$; $$PanaviaF(+Rocatec),12.98{\pm}1.71$$; $$SuperbondC&B(+Al_2O_3)8.27{\pm}2.04$$; $$SuperbondC&B(+Rocatec),14.46{\pm}2.39$$. There was a significant increase in the shear bond strength when the ceramic surface was subjected to the tribochemical treatment(Rocatec 3M) in all cement groups(P<0.05). Bonding strengths of cements applied to samples treated with $Al_2O_3$ were compared; Rely X ARC showed the lowest values, whereas Panavia F cement showed higher value than that of Superbond C&B group with no statistical significance. When the bond strength of cements with of Rocatec treatment was compared, Rely X ARC showed lowest values. Overall, it was apparent that tribochemical treated Super-Bond possessed higher mean bond strength (14.46MPa; P<0.05) than that of Panavia F cement group with no significance. Conclusions. Silica coating followed silanization(Rocatec treatment) increase the bond strength between resin cement and zirconia ceramic. Panavia F containing phosphate monomer and Superbond C&B comprised of 4-META tend to bond chemically with zirconia ceramic, thus demonstrating higher bond strength compared to BisGMA resin cement. Superbond C&B has shown to have highest value of bonding strength to zirconia ceramic after Rocatec treatment compared to other cement.

A STUDY OF TENSILE BOND STRENGTH ACCORDING TO VARIED TREATMENT METHODS OF NONPRECIOUS METAL SURFACE AND RESIN CEMENTS (비귀금속합금 표면처리방법과 레진시멘트 종류가 접착인장강도에 미치는 영향에 관한 연구)

  • Yang, Tai-Jin;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.2
    • /
    • pp.335-348
    • /
    • 1996
  • Retention is one of the major factors deciding the success and longevity of resin bonded restorations. The purpose of this study was to find a better resin cement and metal surface treatment method that would enhance the bonding strength. The bonding surfaces of Verabond, one of Ni-Cr-Be alloys, were treated with sandblasting(Group 1), sandblasting and EZ-Oxisor(Group 2), sandblasting and silicoating(Group 3), and than thay were bonded with All-Bond C & B, Panavia 21, Superbond C & B. The specimens were thermocycled, and the tensile bond strength was measured using the unive-rsal testing machine. Also the mode of bond failure was observed. The results were as folows. 1. The Superbond C & B showed the highest bond strength among the three resin cements and decreased in the order of Panavia 21, All-Bond C & B. There was significant differe-nce among them(p<0.05). 2. Group 3 showed the highest bond strength among the three metal surface treatment methods, and there was significant difference compared with Group 1 and Group 2(p<0.05). But there was no significant difference between Group 1 and Group 2. 3. Observing the mode of bond failure, Superbond C & B and Panavia 21 showed mostly cohesive failure in all groups. All-Bond C & B showed all types of bond failure in Group 3, but Group 1 and Group 2 showed only adhesive failure. 4. According to the results of this study, the silicoating method and 4-META containing resin cement were considered to be more acceptable for resin bonded restoration.

  • PDF

Change of shear bond strength of orthodontic brackets according to surface treatment on dental gold alloy (치과용 금합금의 표면처리에 따른 교정용 브라켓의 전단결합강도 변화)

  • Min, Ji-Hyun;Hwang, Hyeon-Shik;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.30 no.4 s.81
    • /
    • pp.483-490
    • /
    • 2000
  • The dental gold alloy shows a lower bond strength than the natural teeth in bracket bonding, and this can be a possible source of subsequent bond failure. This study aims to evaluate the effect of various gold alloy surface treatment techniques on shear bond strength between the orthodontic adhesives and the gold alloy and to find ways of increasing the bond strength. Two hundred and forty specimens made of the dental fold alloy were divided into twelve groups based on the combination of surface treatment methods(non-surface treatment, sandblasted, sandblasted plus tin-plated, and sandblasted plus intermediate adhesive) and adhesive systems (Ortho-one, Panavia 21, Superbond C&B). The specimens with bonded brackets were placed in distilled water at $37^{\circ}C$ for 24 hours and shear bond strength was measured by a universal testing machine. The results were as follows: 1. All surface-treated groups showed a significantly higher shear bond strength than non-surface-treated groups. 2. The sandblasted plus tin-plated group showed a significantly higher shear bond strength than the sandblasted group only when Panavia 21 was involved. 3. The sandblasted plus intermediate adhesive group showed a significantly higher shear bond strength than sandblasted group regardless of the type of adhesive used. 4. Of the three resin adhesive types, the Superbond C&B showed the highest bond strength, followed by Panavia 21 and Ortho-one. These findings suggest that a combination of sandblasting and intermediate resin treatment is desirable in order to enhance bracket bond strength regardless of adhesive types.

  • PDF

Effect of zirconia surface treatment using nitric acid-hydrofluoric acid on the shear bond strengths of resin cements

  • Cho, Jin Hyung;Kim, Sun Jai;Shim, June Sung;Lee, Keun-Woo
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.77-84
    • /
    • 2017
  • PURPOSE. The aim of this study was to compare the surface roughness of zirconia when using Zircos E etching system (ZSAT), applying a nitric acid-hydrofluoric acid compound as a pretreatment agent, and also to compare the shear bonding strength according to different resin cements. MATERIALS AND METHODS. ZSAT, air abrasion, and tribochemical silicacoating were applied on prepared 120 zirconia specimens (10 mm in diameter, 7 mm in height) using CAD/CAM. Each 12 specimens with 4 different resin cements (Panavia F 2.0, Rely X Unicem, Superbond C&B, and Hot bond) were applied to test interfacial bond strength. The statistical analysis was performed using SAS 9.1 (SAS Institute Inc., Cary, NC, USA). The results are as follows: after application of the ZSAT on the zirconia specimens, surface roughness value after 2-hour etching was higher than those after 1- and 3-hour etching on SEM images. RESULTS. For Superbond C&B and Rely X Unicem, the specimens treated with ZSAT showed higher shear bond strength values than those treated with air abrasion and tribochemical silicacoating system. Regarding the failure mode of interface over cement and zirconia surface, Rely X Unicem and Hot bond showed cohesive failures and Panavia F 2.0 and Superbond C&B showed mixed failures. CONCLUSION. Zircos E etching system in zirconia restoration could increase its shear bond strength. However, its long term success rate and clinical application should be further evaluated.

A STUDY ON THE ADHESIVE BOND STRENGTH OF COMPOSITE RESIN TO Au-Ag-Cu-Pd ALLOY (Au-Ag-Cu-Pd합금과 복합레진간의 접착결합강도에 관한 연구)

  • Seol Young-Hoon;Jung Chang-Mo;Jeon Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.3
    • /
    • pp.378-395
    • /
    • 1994
  • The purpose of this study was to investigate the effect of various metal surface treatments and adhesive systems on the flexural bond strength of composite resin to Au-Ag-Cu-Pd alloy. The specimens were divided into nine groups by the combinations of surface treatment methods and adhesive systems. The types of surface treatment in this study were alumina blasting only, alumina blasting-Sn plating, alumina blasting-heating and three kinds of adhesive system used in this study were Silicoater system(Heraeus Kulzer GmbH,Germany), Superbond C & B(Sun Medical Co.,Ltd.,Japan) and Cesead opaque primer(Kurary Co.,Ltd.,Japan). After surface treatments and adhesive systems were applied, each specimen was built up with Dentacolor composite resin (Heraeus Kulzer GmbH,Germany). Four-point flexural bond strength was measured by Instron universal testing machine (Model 4301,U.S.A.) and modes of failure were observed by SEM(JEOL,SSM-840A,Japan). The obtained results were as follows: 1. The group that was bonded with Superbond C & B after alumina blasting-heating shelved the highest bond strength with significant difference among the groups, except the group with Cesead opaque primer after alumina blasting-Sn plating(P<0.05). 2. In the groups bonded with Cesead opaque primer, there was significant difference only in the bond strength between the alumina blasting-Sn plating group and alumina blasting group, where the former showed a higher bond strength(P<0.05). 3. In the groups bonded with Silicoater system, there were no significant differences in bond strength regardless of the surface treatment method(P<0.05). 4. In SEM evaluation, the groups of high bond strength, especially bonded with Superbond C & B after alumina blasting-heating and Cesead opaque primer after alumina blasting-Sn plating, revealed mainly cohesive-adhesive failure, whereas the others showed the tendency of adhesive failure.

  • PDF

THE EFFCT OF TIME DELAY AFTER SILICOATING ON THE BOND STRENGTH BETWEEN THE METAL AND RESIN CEMENT (Silicoating후 시간지연이 금속과 레진 시멘트 간의 접착강도에 미치는 영향)

  • Yang, Jin-Kyoung;Bae, Jeong-Sik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 1995
  • For the purpose of this study, the silicoating on Ni-Cr-Be alloy surface was carried out by using the Silicoater MD. The effect of time delay after silicoating on the bond strength between the metal and resin cement was examined. The groups were divided into 4 : group 1 : Sandblasted with $250{\mu}m$ aluminium oxide, immediatly cemented group 2 : Sandblasted with $250{\mu}m$ aluminium oxide, silicoated and immediatly cemented group 3 : Sandblasted with $250{\mu}m$ aluminium oxide, silicoated and cemented after 7 days group 4 : Sandblasted with $250{\mu}m$ aluminium oxide, silicoated and coated with unfilled resin and cemented after 7 days Specimens were luted with Comspan, Superbond C&B or Panavia EX. The tensile bond strength between the metal and resin cement was measured by using the universal testing machine. The results were as follows : 1. The bond strength in groups 2, 3 and 4 was higher than that of group 1 (p<0.05). There was no statistically significant difference among the bond strength in groups 2, 3 and 4 (p>0.05). 2. In Comspan-cemented groups, there was no significant difference among the bond strength in groups 2, 3 and 4 (p<0.05). 3. In Panavia EX-cemented groups, the bond strength of group 3 was higher than that of group 2 (p<0.05) and there was no significant difference between groups 3 and 4. 4. In Superbond C&B-cemented groups, there was significant difference between groups 2 and 3 (p<0.05) and the bond strength of group 4 was higher than that of group 3 (p<0.05). 5. The highest tensile bond strength was obtained by using the Superbond C&B and no difference in the Panavia EX and Comspan. 6. The modes of bond failure were mainly cohesive failure. The method of storage and transport indicated in this study seems recommendable for laboratory and clinical use at least up to 7 days.

  • PDF

EFFECT OF SURFACE TREATMENTS OF ZIRCONIA CERAMIC ON THE BOND STRENGTH OF RESIN CEMENTS (Zirconia ceramic의 표면처리 방법이 레진시멘트의 결합강도에 미치는 영향)

  • Kim, Chang-Hun;Jeon, Young-Chan;Jeong, Chang-Mo;Lim, Jang-Seop
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.386-396
    • /
    • 2004
  • Statement of problem: It is not clear how to make a stable bonding between zirconia ceramic and resin cement. And the study about surface treatment of zirconia ceramic or bonding resin cement are not enough. Purpose: To measure and compare the shear bond strength of some resin cements on zirconia ceramic after different surface treatments. Material and method: 48 ceramic discs were made of 3 ceramic materials, zirconia ceramics (Zi-Ceram), heat-pressed ceramics (IPS Empress 2) and slip cast alumina ceramics (In-Ceram). According to the surface treatments of ceramic specimens and resin cements, specimens were classified into 6 groups and each group was composed of 8 specimens. For the surface treatment of Zi-Ceram group (test group), sandblasting and diamond bur preparation were applied and Superbond C&B and Panavia F were bonded respectively. For IPS Empress 2 group (control group), Variolink II was bonded after sandblasting, acid etching, silanization and for In-Ceram ALUMINA group (control group), Panavia F was bonded after sandblasting. After storing specimens in distilled water for 24 hours, the shear bond strength was measured by the universal testing machine. Results and conclusion: 1. Zi-Ceram group with Superbond C&B cement showed higher bond strength than with Panavia F cement regardless to the surface treatments (p<0.05). 2. In Zi-Ceram group with Superbond C&B cement, sandblasting treatment group (12.1MPa) showed higher bond strength than diamond bur treatment group (7.7MPa) (p<0.05). In Zi-Ceram group with Panavia F cement, there were no significant differences in the bond strength according to the surface treatments (p>0.05). 3. Zi-Ceram group with sandblasting and Superbond C&B cement (12.1MPa) showed the highest bond strength. The bond strength of this group was not significantly different from In-Ceram ALUMINA group (10.4MPa) (p>0.05) and lower than IPS Empress 2 group (15.9MPa) (p<0.05).

SHEAR BOND STRENGTH OF PORCELAIN REPAIR RESINS TO NONPRECIOUS CERAMO-METAL ALLOY (도재소부전장관 파절시 비귀금속과 도재수리용 레진간의 결합력에 관한 실험적 연구)

  • Ann, Joon-Young;Bae, Jung-Soo;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.195-209
    • /
    • 1991
  • When the porcelain fused to metal restorations were fractured at the metal interface, various techniques and materials for intraoral porcelain repair have been suggested. The purpose of this study was to investigate the effect of metal surface treatment method and water storage on the shear bond strength of four porcelain repair systems. : Clearfil(Kuraray), All-bond(Bisco), Superbond C & B(Sun Medical), Panavia OP(Kuraray). After the metal surfaces of the specimens were sandblasted by aluminum oxide or roughened by diamond point, they were stored in double deionized water(24 Hr., $37^{\circ}C$) and thermocycling was performed(24 Hr., 1024 cycles), and again half of specimes were stored in water bath(2 Months, $37^{\circ}C$). Mean shear bond strength and mode of failure were recorded. The results of this study were obtained as follows : 1. Differences were observed between the sandblasted and diamond - treated specimens in Clearfil, All-bond, and Superbond. No statistically significant differences were observed in Panavia. 2. The 2-month storage time significantly affected the bond strength of All-bond and Superbond. No statistically significant differences were observed in Clearfil and Panavia. 3. The failures were observed at the interface between opaque resin and the metal in Clearfil and All-bond. 4. The failures were observed at the interface between opaque resin and veneered resin in Panavia. The failures were observed at the interface between opaque resin and veneered resin in Superbond, but 40% of them were fractured at the interface between the metal and opaque resin after 2-month storage time.

  • PDF