• 제목/요약/키워드: Superalloy

검색결과 289건 처리시간 0.023초

Simulation and Experiment of Injection Molding Process for Superalloy Feedstock

  • Jung, Im Doo;Kim, Youngmoo;Park, Seong Jin
    • 한국분말재료학회지
    • /
    • 제22권1호
    • /
    • pp.1-5
    • /
    • 2015
  • Powder injection molding is an important manufacturing technology to mass produce superalloy components with complex shape. Injection molding step is particularly important for realizing a desired shape, which requires much time and efforts finding the optimum process condition. Therefore computer aided engineering can be very useful to find proper injection molding conditions. In this study, we have conducted a finite element method based simulation for the spiral mold test of superalloy feedstock and compared the results with experimental ones. Sensitivity analysis with both of simulation and experiment reveals that the melt temperature of superalloy feedstock is the most important factor for the full filling of mold cavity. The FEM based simulation matches well the experimental results. This study contributes to the optimization of superalloy powder injection molding process.

Superalloy 스크랩으로부터 Co 미분말의 제조(1) (Superalloy 스크랩의 아연처리) (Production of Fine Cobalt Metal Powders from Superalloy Scrap(1) (Treating Superalloy Scrap with Zinc))

  • 박문경;이영근
    • 자원리싸이클링
    • /
    • 제4권1호
    • /
    • pp.52-59
    • /
    • 1995
  • Co의 리싸이클링을 원활히 하기 위하여 괴상 superalloy 스크랩을 용융Zn으로 분해할 때의 최적처리조건을 조사하였다. 조사한 superalloy는 Co-기 Mar-M-509와 X-45 그리고 Ni-기 Rene 80이었다. Zn/스크랩 비율이 1.5~6.5인 장입물을 질소 분위기에서 $750~900^{\circ}C$에서 1~7.5시간 동안 가열하였다. 용융된 Zn은 스크랩을 용해하였고, Zn은 $850~900^{\circ}C$에서 4~6시간 동안 진공증류하여 제거되었다. Mar-M-509와 Rene 80의 최적 처리조건은 용해온도 약 $^850{\circ}C$, Zn/스크랩 비율 약 5, 그리고 용해시간 약 5.5시간이었다. Zn처리 superalloy 생성물은 쉽게 부스러졌으며, 산 용액에 의해 빠르게 침출되었다. Mar-M-509 또는 Rene 80의 경우, 미처리 스크랩(9mm 조각)을 화학양론양 5배의 6N HCl으로 $90^{\circ}C$에서 3시간 동안 처리하면 침출도는 약 1.5~7.2%에 지나지 않았으나, Zn처리 생성물(-20 메쉬의 것)의 침출도는 약 89.0~93.0%나 되었다.

  • PDF

니켈기 초내열합금 Alloy 263의 고온인장 및 크리프 변형기구 (Mechanisms of Tensile and Creep Deformation at Elevated Temperatures in a Ni-Base Superalloy Alloy 263)

  • 김인수;최백규;홍현욱;조창용
    • 대한금속재료학회지
    • /
    • 제49권7호
    • /
    • pp.535-540
    • /
    • 2011
  • The tensile and creep behaviors of Alloy 263, which is a wrought Ni-base superalloy used for gas turbine combustion systems, was studied. Anomalous increase of yield strength and abrupt decrease of elongation with increasing temperature were observed after tensile testing at an intermediate temperature. Elongation of the superalloy decreased as the temperature increased to and above 540$^{\circ}C$, and it reached a minimum value at 760$^{\circ}C$. It was found that creep strain was also very low at the same temperature. Inhomogeneous deformation with intensive slip bands was observed in the specimens tested at low temperature. A thermally-assisted dislocation climb process was regularly conducted at high temperature. Twinning was found to be an important mechanism of both tensile and creep deformations of the superalloy at an intermediate temperature where ductility minimum was observed.

산업용 가스터빈 블레이드용 초내열합금의 기계적 특성 향상에 관한 연구 (Development of Mechanical Properties of Ni-based Superalloy for Land-based Gas Turbine)

  • 천창희;김길무;김두수;장중철;김재철
    • 동력기계공학회지
    • /
    • 제7권3호
    • /
    • pp.18-22
    • /
    • 2003
  • A Study has been made to investigate the effects of hot isostatic press(HIP) and post-HIP heat treatment on microstructures and mechanical properties of Ni-based single crystal superalloy CMSX-4. HIP process was found to heal and close micropores significantly, but did not affect the morphologies of. The elimination of as-cast micropores obtained by HIP process resulted in improved stress-rupture lives of Ni-base single crystal superalloy by 185%.

  • PDF

Pt-Aluminide로 코팅된 초내열합금의 열처리에 따른 미세조직변화 (Effect of Heat Treatment on the Microstructural Evolution of Pt-aluminide Coated Ni-based Superalloy)

  • 주동원;박상현;정연길;이구현;김창석
    • 열처리공학회지
    • /
    • 제19권2호
    • /
    • pp.103-108
    • /
    • 2006
  • Microstructural evolution of Pt-aluminide coated Ni-based superalloy has been investigated with ductilization heat treatment. The Pt coat was prepared on the superalloy and then aluminide coating was conducted using a pack cementation process. Samples were heat-treated at $1050^{\circ}C$ for 2 hrs and the microstructure and element analysis were preformed. A various precipitated compounds were observed within the coating layer and the diffusion region in the Pt-aluminide coating and heat treatment, indicating that the bi-phase compounds of $PtAl_2$ and NiAl were performed during the Pt-aluminide coating, whereas $M_{23}C_6$, MC, $Ni_3Al$ and ${\sigma}$ phases were precipitated in the inter-diffusion region. The bi-phase compounds of $PtAl_2$ and NiAl were transformed into the single phase compound of $PtAl_2$ with the heat treatment, increasing the amount of carbide and ${\sigma}$ phase.

원자층 증착법을 통한 Nb-Si계 초내열합금 분말 상의 TiO2 박막 증착 연구 (TiO2 Thin Film Coating on an Nb-Si-Based Superalloy via Atomic Layer Deposition)

  • 박지영;은수민;변종민;최병준
    • 한국분말재료학회지
    • /
    • 제31권3호
    • /
    • pp.255-262
    • /
    • 2024
  • Nano-oxide dispersion-strengthened (ODS) superalloys have attracted attention because of their outstanding mechanical reinforcement mechanism. Dispersed oxides increase the material's strength by preventing grain growth and recrystallization, as well as increasing creep resistance. In this research, atomic layer deposition (ALD) was applied to synthesize an ODS alloy. It is useful to coat conformal thin films even on complex matrix shapes, such as nanorods or powders. We coated an Nb-Si-based superalloy with TiO2 thin film by using rotary-reactor type thermal ALD. TiO2 was grown by controlling the deposition recipe, reactor temperature, N2 flow rate, and rotor speed. We could confirm the formation of uniform TiO2 film on the surface of the superalloy. This process was successfully applied to the synthesis of an ODS alloy, which could be a new field of ALD applications.

단조용 니켈기지 초내열합금의 조직예측기술 (Microstructure Prediction Technology of Ni-Base Superalloy)

  • 염종택;김정한;홍재근;박노광
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.89-92
    • /
    • 2009
  • As a class of materials, Ni-base superalloys are among the most difficult metal alloys to forge together with refractory metals and cobalt-base superalloys. The mechanical properties of Ni-base superalloys depend very much on grain size and the strengthening phases, $\gamma$' ($Ni_3$(Al,Ti)-type) and $\gamma$".($Ni_3$Nb-type). Especially, the control of grain size remains as a sole means for the control of mechanical properties. The grain size and distribution changes of the wrought superalloys during hot working and heat treatment are mainly controlled by the recrystallization and grain growth behaviors. In this presentation, prediction technology of grain size through the computer-aided process design, and numerical modeling for predicting the microstructure evolution of Ni-base superalloy during hot working were introduced. Also, some case studies were dealt with actual forming processes of Ni-base superalloys.

  • PDF

대형 디젤엔진용 배기밸브의 단조공정에 관한 연구 (Investigation of the Forging Process of Exhaust Valve for Large Diesel Engine)

  • 김동권;김동영;석진익;류석현;김동진;김병훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.627-632
    • /
    • 2001
  • Nimonic 80A superalloy with high-temperature strength and high corrosion-resistance is used in jet engine for aircraft, gas turbine for power plant and marine diesel engine, etc. To develop the manufacturing process of exhaust valve for large diesel engine using Nimonic 80A, various mechanical tests, such as hot compression, microstructure and hardness test have been performed. This results effectively used to set the reasonable forging conditions while hot forging of Nimonic 80A superalloy. Open die and closed die forging experiments are carried out from ESR ingot and finally get a good shaped exhaust valve product.

  • PDF