Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.7.535

Mechanisms of Tensile and Creep Deformation at Elevated Temperatures in a Ni-Base Superalloy Alloy 263  

Kim, In Soo (High Temperature Materials Research Group, Korea Institute of Materials Science)
Choi, Baig Gyu (High Temperature Materials Research Group, Korea Institute of Materials Science)
Hong, Hyun Uk (High Temperature Materials Research Group, Korea Institute of Materials Science)
Jo, Chang Yong (High Temperature Materials Research Group, Korea Institute of Materials Science)
Publication Information
Korean Journal of Metals and Materials / v.49, no.7, 2011 , pp. 535-540 More about this Journal
Abstract
The tensile and creep behaviors of Alloy 263, which is a wrought Ni-base superalloy used for gas turbine combustion systems, was studied. Anomalous increase of yield strength and abrupt decrease of elongation with increasing temperature were observed after tensile testing at an intermediate temperature. Elongation of the superalloy decreased as the temperature increased to and above 540$^{\circ}C$, and it reached a minimum value at 760$^{\circ}C$. It was found that creep strain was also very low at the same temperature. Inhomogeneous deformation with intensive slip bands was observed in the specimens tested at low temperature. A thermally-assisted dislocation climb process was regularly conducted at high temperature. Twinning was found to be an important mechanism of both tensile and creep deformations of the superalloy at an intermediate temperature where ductility minimum was observed.
Keywords
Ni-base superalloy; tensile; creep; deformation twin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 J. C. Zhao, V. Ravikumar, and A. M. Bertran, Metall. and Mater. Trans. A 32A, 1271 (2001).
2 P. N. Singh and Vakil, Singh, Scripta Mater. 34, 1861 (1996).   DOI   ScienceOn
3 G. V. S. Murthy, Sabita Ghosh, Mousumi Das, G. Das, and R. N. Ghosh, Mater. Sci. Eng. A 488, 398 (2008).   DOI   ScienceOn
4 V. Ratna and D. S. Sarma, Scripta Metall. Mater. 29, 467 (1993).   DOI   ScienceOn
5 E. Nembach, Mater. Sci. Eng. A 429, 277 (2006).   DOI   ScienceOn
6 Z. P. Luo, Z. T. Wu, and D. J. Miller, Mater. Sci. Eng. A 354, 358 (2003).   DOI   ScienceOn
7 Z. W. Lian, J. J. Yu, X. F. Sun, H. R. Guan, and Z. Q. Hu, Mater. Sci. Eng. A 489, 227 (2008).   DOI   ScienceOn
8 Z.W. Lian, J.J. Yu, X.Fkis kis028. Sun, H.R. Guan, and Z.Q. Hu, Mater. Sci. Eng. A 489, 227 (2008).   DOI   ScienceOn
9 D. Bettge, W. Oterle, J. Ziebs, and Z. Metallkd 86, 190 (1995).
10 Z. Chu, J. Yu, X. Sun, H. Guan, and Z. Hu, Mater. Sci. Eng. A 527, 3010 (2010).   DOI   ScienceOn
11 B.G. Choi, I. S. Kim, D. H. Kim, and C. Y. Jo, J. Kor. Inst. Met. & Mater. 43, 867 (2005).
12 H. U. Hong, I. S. Kim, B. G. Choi, M. Y. Kim, and C. Y. Jo, Mater. Sci. Eng. A 517, 125 (2009).   DOI   ScienceOn
13 R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock, Metal. and Mater. Trans. A 40A, 1588 (2009).
14 S. Takeuchi and E. Kuramoto, Acta Metall. 21, 145 (1973) .
15 V. Paidar, D. P. Pope, and V. Vitek, Acta. Metal. 32, 435 (1984).   DOI   ScienceOn
16 N. F. Fiore, Rev. High Temp. Mater. 2, 373 (1975).
17 Kovarik, R. R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, and M. J. Mills, Progr. Mater. Sci. 54, 839 (2009).   DOI   ScienceOn
18 W. Z. Wang, H. U. Hong, I. S. Kim, B. G. Choi, H. W. Jeong, M. Y. Kim, and C. Y. Jo, Mater. Sci. Eng. A 523 242 (2009).   DOI   ScienceOn
19 J. F.M. Vergnol and J. R. Grilhe, J. Physique 45, 1479 (1984).   DOI
20 M. Kolbe, Mater. Sci. Eng. A 319-321, 383 (2001).   DOI
21 F. Pettinari, J. Douin, G. Saada, P. Caron, A. Coujou, and N. Clement, Mater. Sci. Eng. A 325 511 (2002).   DOI   ScienceOn
22 M. Kolbe, A. Dlouhy, and G. Eggeler, Mater. Sci. Eng. A 246, 133 (1998).   DOI   ScienceOn