• Title/Summary/Keyword: Super-twisting algorithm

Search Result 8, Processing Time 0.021 seconds

Super-Twisting Sliding Mode Control Design for Cascaded Control System of PMSG Wind Turbine

  • Phan, Dinh Hieu;Huang, ShouDao
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1358-1366
    • /
    • 2015
  • This study focuses on an advanced second-order sliding mode control strategy for a variable speed wind turbine based on a permanent magnet synchronous generator to maximize wind power extraction while simultaneously reducing the mechanical stress effect. The control design based on a modified version of the super-twisting algorithm with variable gains can be applied to the cascaded system scheme comprising the current control loop and speed control loop. The proposed control inheriting the well-known robustness of the sliding technique successfully deals with the problems of essential nonlinearity of wind turbine systems, the effects of disturbance regarding variation on the parameters, and the random nature of wind speed. In addition, the advantages of the adaptive gains and the smoothness of the control action strongly reduce the chatter signals of wind turbine systems. Finally, with comparison with the traditional super-twisting algorithm, the performance of the system is verified through simulation results under wind speed turbulence and parameter variations.

Performance Analysis for Quadrotor Attitude Control by Super Twisting Algorithm (쿼드로터 자세제어를 위한 슈퍼 트위스팅 알고리즘의 성능 분석)

  • Jang, Seok-ho;Yang, You-young;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.373-381
    • /
    • 2020
  • Quadrotor is simple to model because of the symmetric structure but it has the disadvantage of being relatively sensitive to the external disturbance and system uncertainty. The PID technique applied for the attitude control of quadrotor has been applied comprehensively, but it has a disadvantage that is hard to precise control in the nonlinear system. In this work, a quadrotor attitude control law using the super twisting algorithm is studied, which has robust characteristics against disturbance and system uncertainty. To evaluate the attitude performance by the proposed technique, simulation studies and actual flight tests are carried out, and compared with the conventional PID controller.

A Time-Varying Gain Super-Twisting Algorithm to Drive a SPIM

  • Zaidi, Noureddaher;Jemli, Mohamed;Azza, Hechmi Ben;Boussak, Mohamed
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.955-963
    • /
    • 2013
  • To acquire a performed and practical solution that is free from chattering, this study proposes the use of an adaptive super-twisting algorithm to drive a single-phase induction motor. Partial feedback linearization is applied before using a super-twisting algorithm to control the speed and stator currents. The load torque is considered an unknown but bounded disturbance. Therefore, a time-varying switching gain that does not require prior knowledge of the disturbance boundary is proposed. A simple sliding surface is formulated as the difference between the real and desired trajectories obtained from the indirect rotor flux oriented control strategy. To illustrate the effectiveness of the proposed control structure, an experimental setup around a digital signal processor (dS1104) is developed and several tests are performed.

Cooperative Guidance Law for Multiple Near Space Interceptors with Impact Time Control

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.281-292
    • /
    • 2014
  • We propose a novel cooperative guidance law design method based on the finite time disturbance observer (FTDO) for multiple near space interceptors (NSIs) with impact time control. Initially, we construct a cooperative guidance model with head pursuit, and employ the FTDO to estimate the system disturbance caused by target maneuvering. We subsequently separate the cooperative guidance process into two stages, and develop the normal acceleration command based on the super-twisting algorithm (STA) and disturbance estimated value, to ensure the convergence of the relative distance. Then, we also design the acceleration command along the line-of-sight (LOS), based on the nonsingular fast terminal sliding mode (NFTSM) control, to ensure that all the NSIs simultaneously hit the target. Furthermore, we prove the stability of the closed-loop guidance system, based on the Lyapunov theory. Finally, our simulation results of a three-to-one interception scenario show that the proposed cooperative guidance scheme makes all the NSIs hit the target at the same time.

Second order integral sliding mode observer and controller for a nuclear reactor

  • Surjagade, Piyush V.;Shimjith, S.R.;Tiwari, A.P.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.552-559
    • /
    • 2020
  • This paper presents an observer-based chattering free robust optimal control scheme to regulate the total power of a nuclear reactor. The non-linear model of nuclear reactor is linearized around a steady state operating point to obtain a linear model for which an optimal second order integral sliding mode controller is designed. A second order integral sliding mode observer is also designed to estimate the unmeasurable states. In order to avoid the chattering effect, the discontinuous input of both observer and controller are designed using the super-twisting algorithm. The proposed controller is realized by combining an optimal linear tracking controller with a second order integral sliding mode controller to ensure minimum control effort and robustness of the closed-loop system in the presence of uncertainties. The condition for the selection of gains of discontinuous control based on the super-twisting algorithm is derived using a strict Lyapunov function. Performance of the proposed observer based control scheme is demonstrated through non-linear simulation studies.

Adaptive Sliding Mode Control Synthesis of Maritime Autonomous Surface Ship

  • Lee, Sang-Do;Xu, Xiao;Kim, Hwan-Seong;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.306-312
    • /
    • 2019
  • This paper investigates to design a controller for maritime autonomous surface ship (MASS) by means of adaptive super-twisting algorithm (ASTA). A input-out feedback linearization method is considered for multi-input multi-output (MIMO) system. Sliding Mode Controller (SMC) is suitable for MASS subject to ocean environments due to its robustness against parameter uncertainties and disturbances. However, conventional SMC has inherent disadvantages so-called, chattering phenomenon, which resulted from the high frequency of switching terms. Chattering may cause harmful failure of actuators such as propeller and rudder of ships. The main contribution of this work is to address an appropriate controller for MASS, simultaneously controls surge and yaw motion in severe step inputs. Proposed control mechanism well provides convergence bewildered by external disturbances in the middle of steady-state responses as well as chattering attenuation. Also, the adaptive algorithm is contributed to reducing non-overestimated value of control gains. Control inputs of surge and yaw motion are displayed by smoother curves without excessive control activities of actuators. Finally, no overshoot can be seen in transient responses.

A Study on Response Time Delay and Tracking Error Suppression Strategy in Gear Mechanism : Control System Design Approach (기어 백래쉬로 인한 응답지연 및 추종오차 억제방안에 관한 연구)

  • Tran, Manh Son;Choi, Eun-Ho;KIM, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.77-83
    • /
    • 2017
  • The aim of this paper is to solve the chattering and delayed response problems caused by gear backlash. In the gear mechanism based systems, for example, in robot systems, the actuators provide the reduction gear with motors to transfer effectively electric power to mechanical power. Therefore, the gear backlash exists and is an unavoidable fact which makes many undesirable problems. In this paper, the authors try to make a solution for this issue and, introduce several control methods which are PID only, PID with Smith predictor and super-twisting algorithm based SMC(sliding mode control). Each control method is applied to the real plant in which strong backlash is included. By comparison results, it is clear that SMC gives the best control performance with little backlash effects. Also, the usefulness and effectiveness of proposed control method is verified by experiment.

Sliding Mode Control with Super-Twisting Algorithm for Surge Oscillation of Mooring Vessel System (슈퍼트위스팅 슬라이딩모드를 이용한 선박계류시스템의 동적제어)

  • Lee, Sang-Do;Lee, Bo-Kyeong;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.953-959
    • /
    • 2018
  • This paper deals with controlling surge oscillations of a mooring vessel system under large external disturbances such as wind, waves and currents. A control synthesis based on Sliding Mode Control (SMC) with a Super-Twisting Algorithm (STA) has been applied to suppress nonlinear surge oscillations of a two-point mooring system. Despite the advantages of robustness against parameter uncertainties and disturbances for SMC, chattering is the main drawback for implementing sliding mode controllers. First-order SMC shows convergence within the desired level of accuracy, in which chattering is the main obstacle related to the destructive phenomenon. Alternatively, STA completely eliminates chattering phenomenon with high accuracy even for large disturbances. SMC based on STA is an effective tool for the motion control of a nonlinear mooring system because it avoids the chattering problems of a first-order sliding mode controller. In addition, the error trajectories of controlled mooring systems implemented by means of STA form in the bounded region. Finally, the control gain effect of STA can be observed in sliding surface and position trajectory errors.