마이크로렌즈 어레이 기반의 카메라로 촬영된 라이트필드 영상은 낮은 공간해상도 및 각해상도로 인하여 실제 사용하기에는 많은 제약이 따른다. 고해상도의 공간해상도 영상은 최근 많이 연구되고 있는 단일 영상 초해상도 기법으로 쉽게 얻을 수 있으나 고해상도의 각해상도 영상은 영상사이에 내재된 시점차 정보를 이용하는 과정에서 왜곡이 발생하여 좋은 품질의 각해상도 영상을 얻기 힘든 문제가 있다. 본 논문에서는 영상 사이에 내재된 시점차 정보를 효과적으로 추출하기 위해서 팽창 합성곱 신경망을 이용하여 초기 특징맵을 추출하고 잔차 신경망으로 새로운 시점 영상을 생성하는 라이트 필드 각 초해상도 영상 기법을 제안한다. 제안하는 네트워크는 기존의 각 초해상도 네트워크와 비교하여 PSNR 및 주관적 화질 비교에서 우수한 성능을 보였다.
Kim, Chang-Hyun;Choi, Kyu-Ha;Hwang, Kyu-Young;Ra, Jong-Beom
한국방송∙미디어공학회:학술대회논문집
/
한국방송공학회 2009년도 IWAIT
/
pp.254-257
/
2009
In this paper, we propose a learning-based super-resolution algorithm. In the proposed algorithm, a multi-resolution wavelet approach is adopted to perform the synthesis of local high-frequency features. To obtain a high-resolution image, wavelet coefficients of two dominant LH- and HL-bands are estimated based on wavelet frames. In order to prepare more efficient training sets, the proposed algorithm utilizes the LH-band and transposed HL-band. The training sets are then used for the estimation of wavelet coefficients for both LH- and HL-bands. Using the estimated high frequency bands, a high resolution image is reconstructed via the wavelet transform. Experimental results demonstrate that the proposed scheme can synthesize high-quality images.
본 논문은 단일 이미지에서 초해상도 영상 생성을 위해 저해상도 이미지에서 생성한 패치정보를 기반으로 선형보간하는 방법을 제안하였다. 기존의 초해상도 생성 방법인 전역 공간의 회귀 모델을 사용하면 특정 영역에 대해 참조할 정보가 부족하여 일반적으로 품질이 떨어지는 결과가 나타난다. 이러한 결과를 보완하기 위해 제안하는 방법은 초해상도 이미지 생성 과정에서 영상을 패치 단위로 지역을 분할하여 의미있는 정보를 수집하고, 수집된 정보를 기반으로 초해상도 이미지 생성을 위해 확장시킨 이미지 매트릭스 영역의 구성정보를 분석하여 선형 보간 과정을 거치고 패치정보를 대응시켜 탐색한 최적의 패치 정보를 기준으로 선형 보간하는 방법을 제안하였다. 실험을 위해 원본 이미지를 복원된 영상과 PSNR, SSIM으로 비교 평가하였다.
본 논문은 움직임이 큰 저해상도 영상을 초고해상도 영상으로 복원하는 움직임 추정기반의 초고해상도 알고리즘을 제안한다. 일반적인 실험영상에 비해 실제 사용되는 움직임이 큰 영상은 부화소 움직임을 찾기가 어렵다. 또한 일반 움직임 추정기법을 이용한 참조이미지와 후보이미지를 찾기 위해서는 매우 높은 계산 복잡도를 가지는 단점이 있다. 이러한 문제점을 보완하기 위해 기존의 2차원적 움직임 추정기법을 이용하여 제안한 임계값을 기준으로 등록 조건을 만족하는 참조이미지를 결정하고, 후보 이미지들 사이의 최소 가중치를 가진 최적의 후보 이미지들을 찾아 초고해상도 복원과정을 진행하는 새로운 영상 등록 알고리즘을 제안하였다. 실험 결과에 따르면, 제안한 기법은 평균 PSNR이 31.89dB로 전통적인 초고해상도 기법보다 높은 PSNR을 보이며 계산 복잡도도 향상되는 결과가 나타났다.
본 논문에서는 저해상도 영상에서 번호판 인식 성능 향상을 위해 번호판 검출 기술과 초해상도 복원 기술의 융합 방법을 제안한다. 제안된 알고리즘에서 번호판 검출 부분은 구조적 패턴 특징을 기반으로 하였으며, 초해상도 부분은 칼만 필터 기반 순차적 데이터 방법으로 구성된다. 제안한 융합 방법은 입력 영상에서 번호판 검출 여부에 따라 (i) 전체 영상에 대한 초해상도 복원 과정을 거친 후 고해상도 번호판 영상을 얻는 방법과, (ii) 번호판 검출 후 검출된 번호판 영역에 대해 초해상도 복원을 수행하여 고해상도 번호판 영상을 얻는 방법으로 나뉜다. 다양한 환경에서의 모의 실험을 통해 제안된 융합 방법의효용성을 입증하였다. 다양한 환경에서의 모의 실험을 통해 제안된 융합 방법의 효용성을 입증하였다.
Plenty of works have indicated that single image super-resolution (SISR) models relying on synthetic datasets are difficult to be applied to real scene text image super-resolution (STISR) for its more complex degradation. The up-to-date dataset for realistic STISR is called TextZoom, while the current methods trained on this dataset have not considered the effect of multi-scale features of text images. In this paper, a multi-scale and attention fusion model for realistic STISR is proposed. The multi-scale learning mechanism is introduced to acquire sophisticated feature representations of text images; The spatial and channel attentions are introduced to capture the local information and inter-channel interaction information of text images; At last, this paper designs a multi-scale residual attention module by skillfully fusing multi-scale learning and attention mechanisms. The experiments on TextZoom demonstrate that the model proposed increases scene text recognition's (ASTER) average recognition accuracy by 1.2% compared to text super-resolution network.
본 논문에서는 CAR(content adaptive resampler)로 축소된 저해상도 이미지를 직접 다른 모델에 여러가지 방식으로 훈련을 시켜 성능을 개선시키고자 하였다. 본 논문에서는 단일 영상 super resolution 에 관하여 여러 기술이 존재하는 상황에 더 나은 기술을 테스트하려 하고 그를 위해 과거의 모델들에 대한 이해가 필요하여 이를 구현하였다. 현재 가장 뛰어난 성능을 보이고 있는 모델 중의 하나인 CAR 에서 복원 전 이미지를 사용하여 훈련을 시키면 더 나은 성능의 모델을 만들 수 있을 것이라고 가정하고 다양한 훈련을 통해 성능을 개선시키고자 하였다.
디스플레이의 해상도의 증가에 따라 고해상도 텍스처 맵을 내장한 앱들도 함께 증가하는 추세에 있다. 최근 딥러닝 기반 이미지 초해상도 기법들의 발전은 이러한 고해상도 텍스처 생성 작업을 자동화할 수 있는 가능성을 만들고 있다. 하지만 이러한 적용 사례에 대해 심층적으로 분석한 연구는 아직 부족한 상태이다. 그래서 본 논문에서는 최신 초해상도 기법들 중 BSRGAN, Real-ESRGAN, SwinIR(classical 및 real-world image SR)을 택하여 텍스처 맵의 업스케일링(upscaling)에 적용한 후 그 결과를 정량적, 정성적으로 비교, 분석하였다. 실험 결과 업스케일링 후 나타나는 다양한 아티팩트(artifact)들을 발견할 수 있었으며, 이를 통해 기존 초해상도 기법들을 텍스처 맵 업스케일링에 곧바로 적용하기에는 일부 미흡한 부분이 존재한다는 점을 확인하였다.
The recently developed correlative super-resolution fluorescence microscopy (SRM) and electron microscopy (EM) is a hybrid technique that simultaneously obtains the spatial locations of specific molecules with SRM and the context of the cellular ultrastructure by EM. Although the combination of SRM and EM remains challenging owing to the incompatibility of samples prepared for these techniques, the increasing research attention on these methods has led to drastic improvements in their performances and resulted in wide applications. Here, we review the development of correlative SRM and EM (sCLEM) with a focus on the correlation of EM with different SRM techniques. We discuss the limitations of the integration of these two microscopy techniques and how these challenges can be addressed to improve the quality of correlative images. Finally, we address possible future improvements and advances in the continued development and wide application of sCLEM approaches.
International journal of advanced smart convergence
/
제11권2호
/
pp.13-21
/
2022
In this paper, we propose a learning based joint demosaicing and super-resolution framework which uses only the mosaiced color filter array(CFA) image as the input. As the proposed method works only on the mosaicied CFA image itself, there is no need for a large dataset. Based on our framework, we proposed two different structures, where the first structure uses one deep image prior network, while the second uses two. Experimental results show that even though we use only the CFA image as the training image, the proposed method can result in better visual quality than other bilinear interpolation combined demosaicing methods, and therefore, opens up a new research area for joint demosaicing and super-resolution on raw images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.