• Title/Summary/Keyword: Super-Gaussian beam

Search Result 3, Processing Time 0.019 seconds

Increased Efficiency of Long-distance Optical Energy Transmission Based on Super-Gaussian (수퍼 가우시안 빔을 이용한 레이저 전력 전송 효율 개선)

  • Jeongkyun Na;Byungho Kim;Changsu Jun;Hyesun Cha;Yoonchan Jeong
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.150-156
    • /
    • 2024
  • One of the key factors in research regarding long-distance laser beam propagation, as in free-space optical communication or laser power transmission, is the transmission efficiency of the laser beam. As a way to improve efficiency, we perform extensive numerical simulations of the effect of modifying the laser beam's profile, especially replacing the fundamental Gaussian beam with a super-Gaussian beam. Numerical simulations of the transmitted power in the ideal diffraction-limited beam diameter determined by the optical system of the transmitter, after about 1-km propagation, reveal that the second-order super-Gaussian beam can yield superior performance to that of the fundamental Gaussian beam, in both single-channel and coherently combined multi-channel laser transmitters. The improvement of the transmission efficiency for a 1-km propagation distance when using a second-order super-Gaussian beam, in comparison with a fundamental Gaussian beam, is estimated at over 1.2% in the singlechannel laser transmitter, and over 4.2% and over 4.6% in coherently combined 3- and 7-channel laser transmitters, respectively. For a range of the propagation distance varying from 750 to 1,250 m, the improvement in transmission efficiency by use of the second-order super-Gaussian beam is estimated at over 1.2% in the single-channel laser transmitter, and over 4.1% and over 4.0% in the coherently combined 3- and 7-channel laser transmitters, respectively. These simulation results will pave the way for future advances in the generation of higher-order super-Gaussian beams and the development of long-distance optical energy-transfer technology.

Research on BTU and Short-axis Geometry of Line-beam Optics for LLO Applications (레이저 박리용 선형 빔 광학계의 빔 변환 모듈과 단축 형상에 대한 연구)

  • Lee, Seungmin;Lee, Gwangjin;Kim, Daeyong;Lee, Sanghyun;Jung, Jinho
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.276-285
    • /
    • 2021
  • This paper reports the study of the line-beam optical system of the laser lift-off (LLO) equipment used in the OLED manufacturing process. To obtain both a long process depth and a narrow width of the line beam, even with the poor M2 value of the laser source, the research is focused on the optical system, including the beam transformation unit (BTU). We also propose optical configurations for the super-Gaussian distribution and the fiber-based BTU for the flat-top distribution.

Analysis of Major Error Factors in Coherent Beam Combination: Phase, Tip Tilt, Polarization Angle, and Beam Quality

  • Jeongkyun Na;Byungho Kim;Changsu Jun;Yoonchan Jeong
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.406-415
    • /
    • 2024
  • The major error factors that degrade the efficiency of coherent beam combining (CBC) are numerically studied in a comprehensive manner, paying particular attention to phase, tip-tilt, polarization angle, and beam quality. The power in the bucket (PIB), normalized to the zero-error PIB, is used as a figure of merit to quantify the effect of each error factor. To maintain a normalized PIB greater than or equal to 95% in a 3-channel CBC configuration, the errors in phase, tip-tilt, and polarization angle should be less than 1.06 radians, 1.25 ㎛, and 1.06 radians respectively, when each of the three parameters is calculated independently with the other two set to zero. In a worst-case scenario of the composite errors within the parameter range for the independent-95%-normalized-PIB condition, the aggregate effect would reduce the normalized PIB to 83.8%. It is noteworthy that the PIB performances of a CBC system, depending on phase and polarization-angle errors, share the same characteristic feature. A statistical approach for each error factor is also introduced, to assess a CBC system with an extended number of channels. The impact of the laser's beam-quality factor M2 on the combining efficiency is also analyzed, based on a super-Gaussian beam. When M2 increases from 1 to 1.3, the normalized PIB is reduced by 2.6%, 11.8%, 12.8%, and 13.2% for a single-channel configuration and 3-, 7-, and 19-channel CBC configurations respectively. This comprehensive numerical study is expected to pave the way for advances in the evaluation and design of multichannel CBC systems and other related applications.