• Title/Summary/Keyword: Super cooling

Search Result 92, Processing Time 0.024 seconds

A Study on the Effect of Surfactant on the Freezing of Aqueous Solution (수용액의 동결에 영향을 미치는 계면활성제의 효과에 관한 연구)

  • Kim, Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.694-698
    • /
    • 2007
  • This present study has dealt with the effect of surfactant on the freezing of aqueous solution Sodium chloride aqueous solution was used to measure the effect of surfactant and the main parameters of this experiment were temperature of bath, revolution of stirrer. and the radial velocity of NaCl solution. The acquired main conclusions are as follows; 1) the lower super-cooling temperature make hardly to attach the ice on beaker, 2) the size of ice become smaller to add the surfactant, 3) the ice packing factor increase with increasing of stirrer revolution.

The Core Technical Trends of TESLA EV(Electric Vehicle) Motors (테슬라(TESLA) 전기자동차 핵심 기술동향)

  • Bae, Jin-Yong;Kim, Yong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.414-422
    • /
    • 2017
  • This paper reviews the core technical trends of TESLA EV Motors. The TESLA EV Motors is explosively popular with a considerable recharging infrastructure, a wide 17-[inch] touch display, 417 [HP], and 378 [km] going distance. The object of this study analyzes the body appearance, motor and, battery cooling system, battery arrangement, battery management system, super charging station, power electronics, and induction motor.

Heat Transfer Characteristics of Small Slush Maker (소형 슬러시 제조기의 전열현상에 관한 연구)

  • Kim, Do-Young;Kim, Nae-Hyun;Oh, Wang-Kyu;Choi, Yong-Min;Byun, Ho-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.346-350
    • /
    • 2008
  • Tests were conducted to obtain heat transfer coefficients during slush formation from 10% sucrose solution. The slush was made by scraping the ice formed on the cylinder. Cold brine was supplied inside of the cylinder to cool the outer surface. Below a certain brine temperature, which was $5^{\circ}C$ in this study, the solution was supercooled, and suddenly turned into ice. The super-cooling increases as the brine temperature increased. During slush formation, the heat transfer coefficient oscillated significantly, due to periodic removal of ice chunk form the surface. The average heat transfer coefficient during slush formation was approximately twice of that obtained during single phase cooling. The heat transfer coefficient was also affected by the brine temperature with increasing heat transfer coefficient at lower brine temperature.

  • PDF

Current Status of Liquid-Free Superconducting System Develo (액체를 사용하지 않는 초전도시스템의 개발 동향)

  • 장호명
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.1-6
    • /
    • 1999
  • The recent progress in the new cooling technology for superconducting systems without liquid cryogens is briefly presented. In these conduction-cooled systems, the super-conducting magnets are cooled by a direct contact with closed-cycle cryocoolers and only electricity is supplied to maintain the cryogenic temperatures. It is reported that at least 20 conduction-cooled (low Tc or high Tc) super- conducting systems have been constructed, tested, or commercially used worldwide. Some of the significant design issues are discussed in comparison with the conventional liquid-helium cooled systems.

  • PDF

Research on aerodynamic force and structural response of SLCT under wind-rain two-way coupling environment

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.247-270
    • /
    • 2019
  • Wind-resistant design of existing cooling tower structures overlooks the impacts of rainfall. However, rainstorm will influence aerodynamic force on the tower surface directly. Under this circumstance, the structural response of the super-large cooling tower (SLCT) will become more complicated, and then the stability and safety of SLCT will receive significant impact. In this paper, surrounding wind fields of the world highest (210 m) cooling tower in Northwest China underthree typical wind velocities were simulated based on the wind-rain two-way coupling algorithm. Next, wind-rain coupling synchronous iteration calculations were conducted under 9 different wind speed-rainfall intensity combinations by adding the discrete phase model (DPM). On this basis, the influencing laws of different wind speed-rainfall intensity combinations on wind-driving rain, adhesive force of rain drops and rain pressure coefficients were discussed. The acting mechanisms of speed line, turbulence energy strength as well as running speed and trajectory of rain drops on structural surface in the wind-rain coupling field were disclosed. Moreover, the fitting formula of wind-rain coupling equivalent pressure coefficient of the cooling tower was proposed. A systematic contrast analysis on its 3D distribution pattern was carried out. Finally, coupling model of SLCT under different working conditions was constructed by combining the finite element method. Structural response, buckling stability and local stability of SLCT under different wind velocities and wind speed-rainfall intensity combinations were compared and analyzed. Major research conclusions can provide references to determine loads of similar SLCT accurately under extremely complicated working conditions.

Small-Capacity Solar Cooling System by Desiccant Cooling Technology (태양열 이용 소용량 제습냉방시스템)

  • Lee, Dae-Young;Kwon, Chi-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.154-156
    • /
    • 2008
  • A prototype of the desiccant cooling system with a regenerative evaporative cooler was built and tested for the performance evaluation. The regenerative evaporative cooler is to cool a stream of air using evaporative cooling effect without an inc6rease in the humidity ratio. It is comprised of multiple pairs of dry and wet channels and the evaporation water is supplied only to the wet channels. By redirecting a portion of the air flown out of the dry channel into the wet channel, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature at the outlet end of the dry channels. Incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in the desiccant rotor that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners. At the ARI condition with the regeneration temperature of $60^{\circ}C$, the prototype showed the cooling capacity of 4.4 kW and COP of 0.75.

  • PDF

Cooling Condition of HTS Power Cable (고온초전도 전력케이블의 냉각조건)

  • 김동락;김승현;양형석;조승연;이제묘
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.35-36
    • /
    • 2002
  • High temperature super conducting(HTS) cable system for power transmission are under development that will be cooled by sub-cooled liquid nitrogen to provide cooling of the cable and termination. The target of the development during the first 3-years stage is 22.9kV/50MVA class and 30m length cold dielectric type 3-phase power cable. The essential features of the HTS cable cryogenic system and performance conditions for the design of power cable will be discussed.

  • PDF

Study on Design of high Efficient Cooling System for Low Temperature Furnace in Semiconductor Processing (반도체 공정용 저온 열처리로의 고효율 냉각시스템 설계에 관한 연구)

  • Jeoung, Du-Won;Suh, Ma-Son;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.71-76
    • /
    • 2010
  • According to recent changes in industry for semiconductor devices, a low-temperature treatment has become a necessity. These changes relate to size refinement and the development of new materials. While variation in cooling efficiency does not affect the yield when using a high-temperature treatment, uniform cooling efficiency is necessary avoid "inconsistencies/bends" in low temperature treatments. However it is difficult to increase temperature stabilization in low temperature treatments. In this paper, using CFD (Computer Fluid Dynamics), we analyze and manipulate the design and input of the low-temperature system to attempt to control for temperature variations within the quartz tube, of which airflow appears to be a predominant factor. This simulation includes variable inputs such as airflow rate, head pressure, and design manipulations in the S.C.U. (Super Cooling Unit).

Energy Performance Evaluation of Zero Energy Technologies for Zero Energy Multi-House (공동주택의 에너지 자립을 위한 핵심요소기술의 에너지 성능평가)

  • Yoon, Jong-Ho;Kim, Byoung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.161-167
    • /
    • 2007
  • Zero Energy Multi-House(ZeMH) signifies a residential building which can be self sufficient with just new and renewable energy resources without the aid of any existing fossil fuel. For success of ZeMH, various innovative energy technologies Including passive and active systems should be well integrated with a systematic design approach. The first step for ZeMH is definitely to minimize the conventional heating and cooling loads over 50% with major energy conservation measure and passive solar features which are mainly related to building design components such as super-insulation, super window, including infiltration and ventilation issues. The purpose of this study is to analyze the thermal effect of various building design components in the early design of ZeMH. The process of the study is presented in the following. 1) selection reference model for simulation 2) verification of reference model with computer simulation program(ESP-r 9.0). 3) analysis of effect according to insulation-thickness, kinds of windows, rate of infiltration. and The simulation results indicate that almost 50% savings of conventional heating load in multi-house can be achieved with the optimum design of building components such as super insulation, super window, infiltration, ventilation.