• Title/Summary/Keyword: Super capacitor

Search Result 106, Processing Time 0.041 seconds

Method of Minimizing ESS Capacity for Mitigating the Fluctuation of Wind Power Generation System (풍력발전의 출력 변동 저감을 위한 ESS 최소용량 산정기법)

  • Kim, Jae-Hong;Kang, Myeong-Seok;Kim, Eel-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.119-125
    • /
    • 2011
  • In this paper, we have studied about minimizing the Energy Storage System (ESS) capacity for mitigating the fluctuation of Wind Turbine Generation System (WTGS) by using Electric Double Layer Capacitor (EDLC) and Battery Energy Storage System (BESS). In this case, they have some different characteristics: The EDLC has the ability of generating the output power at high frequency. Thus, it is able to reduce the fluctuation of WTGS in spite of high cost. The BESS, by using Li-Ion battery, takes the advantage of high energy density, however it is limited to use at low frequency response. To verify the effectiveness of the proposed method, simulations are carried out with the actual data of 2MW WTGS in case of worst fluctuation of WTGS is happened. By comparing simulation results, this method shows the excellent performance. Therefore, it is very useful for understanding and minimizing the ESS capacity for mitigating the fluctuation of WTGS.

Unified Power Quality Conditioner for Compensating Voltage Interruption

  • Han, Byung-Moon;Cho, Bo-Hyung;Sul, Seung-Ki;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.503-512
    • /
    • 2006
  • This paper proposes a new configuration for the Unified Power Quality Conditioner, which has a DC/DC converter with super-capacitors for energy storage. The proposed UPQC can compensate the reactive power, harmonic current, voltage sag and swell, voltage imbalance, and voltage interruption. The performance of the proposed system was analyzed through simulations with PSCAD/EMTDC software. The feasibility of system implementation is confirmed through experimental works with a prototype. The proposed UPQC has ultimate capability to improve the power quality at the point of installation on power distribution systems and industrial power systems.

Improved DC Model and Transfer Functions for the Negative Output Elementary Super Lift Luo Converter

  • Wang, Faqiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1082-1089
    • /
    • 2017
  • Negative output elementary super lift Luo converter (NOESLLC), which has the significant advantages including high-voltage transfer gain, high efficiency, high power density, and reduced output voltage/inductor current ripples when compared to the traditional DC-DC converters, is an attractive DC-DC converter for the field of negative DC voltage applications. In this study, in consideration of the voltage across the energy transferring capacitor changing abruptly at the beginning of each switching cycle, the improved averaged model of the NOESLLC operating in continuous conduction mode (CCM) is established. The improved DC model and transfer functions of the system are derived and analyzed. The current mode control is applied for this NOESLLC. The results from the theoretical calculations, the PSIM simulations and the circuit experiments show that the improved DC model and transfer functions here are more effective than the existed ones of the NOESLLC to describe its real dynamical behaviors.

Development of Single-Phase DVR(Dynamic Voltage Restorer) Composed of H-Bridge Inverter and SuperCapacitor (H-브리지 인버터와 수퍼커패시터로 구성된 단상 DVR(Dynamic Voltage Restorer)의 개발)

  • Lee, Dong-Geun;Lee, Doo-Young;Yang, Seung-Chul;Bae, Byung-Yeol;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.160-161
    • /
    • 2007
  • This paper describes the development of a single-phase DVR(Dynamic voltage Restorer), which is composed of H-bridge inverter and super-capacitors. The operational feasibility was verified through computer simulations with PSCAD/EMTDC software, and experimental works with 3kVA prototype. The developed system can compensates the input voltage sag and interruption within 2ms, in which the maximum allowable duration of voltage interruption is 1.5 seconds. It can be effectively used to compensate the voltage interruption in the sensitive load, such as computer, communication equipment, automation equipment, and medical equipment. The developed system has a simple structure to be easily implemented with commercially available components and to be highly reliable in operation.

  • PDF

Grid Peak Power Limiting / Compensation Power Circuit for Power Unit under Dynamic Load Profile Conditions (Dynamic Load Profile 조건의 전원 장치에 있어서 계통 Peak Power 제한/보상 전력 회로)

  • Jeong, Hee-Seong;Park, Do-Il;Lee, Yong-Hwi;Lee, Chang-Hyeon;Rho, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.376-383
    • /
    • 2022
  • The improved performance of computer parts, such as graphic card, CPU, and main board, has led to the need for power supplies with a high power output. The dynamic load profile rapidly changes the usage of power consumption depending on load operations, such as PC power and air conditioner. Under dynamic load profile conditions, power consumption can be classified into maximum, normal, and standby power. Several problems arise in the case of maximum power. Peak power is generated at the system power source in the maximum-power situation. Frequent generation of peak power can cause high-frequency problems and reduce the life of high-pressure parts (especially high-pressure capacitors). For example, when a plurality of PCs are used, system overload occurs due to peak power generation and causes problems, such as power failure and increase in electricity bills due to exceeded contract power. To solve this problem, a system peak power limit/compensation power circuit is proposed for a power supply under dynamic load profile conditions. The proposed circuit detects the system current to determine the power situation of the load. When the system current is higher than the set level, the circuit recognizes that the system current generates peak power and compensates for the load power through a converter using a super capacitor as the power source. Thus, the peak power of loads with a dynamic load profile is limited and compensated for, and problems, such as high-frequency issues, are solved. In addition, the life of high-pressure parts is increased.

Assessing the ED-H Scheduler in Batteryless Energy Harvesting End Devices: A Simulation-Based Approach for LoRaWAN Class-A Networks

  • Sangsoo Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • This paper proposes an integration of the ED-H scheduling algorithm, known for optimal real-time scheduling, with the LoRaEnergySim simulator. This integration facilitates the simulation of interactions between real-time scheduling algorithms for tasks with time constraints in Class-A LoRaWAN Class-A devices using a super-capacitor-based energy harvesting system. The time and energy characteristics of LoRaWAN status and state transitions are extracted in a log format, and the task model is structured to suit the time-slot-based ED-H scheduling algorithm. The algorithm is extended to perform tasks while satisfying time constraints based on CPU executions. To evaluate the proposed approach, the ED-H scheduling algorithm is executed on a set of tasks with varying time and energy characteristics and CPU occupancy rates ranging from 10% to 90%, under the same conditions as the LoRaEnergySim simulation results for packet transmission and reception. The experimental results confirmed the applicability of co-simulation by demonstrating that tasks are prioritized based on urgency without depleting the supercapacitor's energy to satisfy time constraints, depending on the scheduling algorithm.

Investigation of a Pseudo Capacitor with Polyacrylonitrile based Gel Polymer Electrolyte

  • Harankahawa, Neminda;Weerasinghe, Sandaranghe;Vidanapathirana, Kamal;Perera, Kumudu
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.107-114
    • /
    • 2017
  • Pseudo capacitors belong to one group of super capacitors which are consisted with non carbon based electrodes. As such, conducting polymers and metal oxide materials have been employed for pseudo capacitors. Conducting polymer based pseudo capacitors have received a great attention due to their interesting features such as flexibility, low cost and ease of synthesis. Much work has been done using liquid electrolytes for those pseudo capacitors but has undergone various drawbacks. It has now been realized the use of solid polymer electrolytes as an alternative. Among them gel polymer electrolytes (GPEs) are in a key place due to their high ambient temperature conductivities as well as suitable mechanical properties. In this study, composition of a polyacrylonitrile (PAN) based GPE was optimized and it was employed as the electrolyte in a pseudo capacitor having polypyrrole (PPy) electrodes. GPE was prepared using ethylene carbonate (EC), propylene carbonate (PC), sodium thiocyanate (NaSCN) and PAN as starting materials. The maximum room temperature conductivity of the GPE was $1.92{\times}10^{-3}Scm^{-1}$ for the composition 202.5 PAN : 500 EC : 500 PC : 35 NaSCN (by weight). Performance of the pseudo capacitor was investigated using Cyclic Voltammetry technique, Electrochemical Impedance Spectroscopy (EIS) technique and Continuous Charge Discharge (GCD) test. The single electrode specific capacity (Cs) was found out to be 174.31 F/g using Cyclic Voltammetry technique at the scan rate of 10 mV/s and within the potential window -1.2 V to 1.2 V. The same value obtained using EIS was about 84 F/g. The discharge capacity ($C_d$) was 69.8 F/g. The capacity fade over 1000 cycles was rather a low value of 4%. The results proved the suitability of the pseudo capacitor for improving the performance further.

Study on the Electrochemical Characteristics of Lithium Ion Doping to Cathode for the Lithium Ion Capacitor (리튬이온 커패시터의 음극도핑 및 전기화학특성 연구)

  • CHOI, SEONGUK;PARK, DONGJUN;HWANG, GABJIN;RYU, CHEOLHWI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.416-422
    • /
    • 2015
  • Lithium Ion capacitor (LIC) is a new storage device which combines high power density and high energy density compared to conventional supercapacitors. LIC is capable of storing approximately 5.10 times more energy than conventional EDLCs and also have the benefits of high power and long cycle-life. In this study, LICs are assembled with activated carbon (AC) cathode and pre-doped graphite anode. Cathode material of natural graphite and artificial graphite kinds of MAGE-E3 was selected as the experiment proceeds. Super-P as a conductive agent and PTFE was used as binder, with the graphite: conductive agent: binder of 85: 10: 5 ratio of the negative electrode was prepared. Lithium doping condition of current density of $2mA/cm^2$ to $1mA/cm^2$, and was conducted by varying the doping. Results Analysis of Inductively Coupled Plasma Spectrometer (ICP) was used and a $1mA/cm^2$ current density, $2mA/cm^2$, when more than 1.5% of lithium ions was confirmed that contained. In addition, lithium ion doping to 0.005 V at 10, 20 and $30^{\circ}C$ temperature varying the voltage variation was confirmed, $20^{\circ}C$ cell from the low internal resistance of $4.9{\Omega}$ was confirmed.

Battery Current Limit Control Technique for Life Extension of E-bike's Battery (E-bike 적용 배터리의 수명 연장을 위한, 배터리 전류 제한 제어 기법)

  • Kim, Da Som;Kong, Sung Jae;Yoo, Hye Mi;Kang, Kyung Soo;ROH, CHUNG WOOK
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.339-340
    • /
    • 2016
  • 본 논문에서는 E-bike 구동을 위한 Boost 컨버터의 배터리 전류 제한 기법에 관해 제안한다. Boost 컨버터를 E-bike에 적용할 경우, 기동 시 큰 전류를 보충하기 위해 출력 단에 Super Capacitor가 사용된다. 이로 인해 생기는 입력 단의 Inrush 전류는 회로 구성 소자의 파손 문제를 발생시킬 수 있다. 그 뿐만 아니라, 배터리 입장에서의 Inrush 전류 및 모터 기동 시 순간의 큰 전류는 자체적 손상 및 수명 저하 문제를 야기한다. 상기 문제를 해결하기 위해 본 논문에서는 E-bike 적용 배터리의 수명 연장을 위한, 배터리 전류 제한 제어 기법을 제안한다. 컨버터 입력 전류인 배터리 전류를 제한함으로써, 큰 전류에 의한 소자 파손 및 배터리의 안정성 문제를 해결하였으며, 이를 통해 배터리의 수명을 연장이 가능하였다. 이를 모의실험 및 실험을 통해 타당성을 검증하였다.

  • PDF

Study on the Operating Characteristics of Double Fed Induction Generator Connected AC network (계통 연계형 권선형 유도발전기의 동작특성 연구)

  • Kim, Chan-Ki;Han, Sang-Yul;Choo, Jin-Boo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.247-257
    • /
    • 2006
  • This paper shows the comparison of operating characteristics between squirrel cage induction generator and DFIG(Double Fed Induction Generator). Because squirrel cage induction generator consume the reactive power due to magnetizing reactance, the capacitor is need to compensate the reactive power. Otherwise, two back-to-back PWM voltage-fed inverters connected between the stator and the rotor allow sub/super synchronous operation with low distortion currents. In this paper, the response characteristics of squirrel cage induction generator and DFIG, were analyzed and investigated using PSCAD/EMTDC.