• Title/Summary/Keyword: Super Sampling

Search Result 49, Processing Time 0.021 seconds

Super-Resolution Image Processing Algorithm Using Hybrid Up-sampling (하이브리드 업샘플링을 이용한 베이시안 초해상도 영상처리)

  • Park, Jong-Hyun;Kang, Moon-Gi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.294-302
    • /
    • 2008
  • In this paper, we present a new image up-sampling method which registers low resolution images to the high resolution grid when Bayesian super-resolution image processing is performed. The proposed up-sampling method interpolates high-resolution pixels using high-frequency data lying in all the low resolution images, instead of up-sampling each low resolution image separately. The interpolation is based on B-spline non-uniform re-sampling, adjusted for the super-resolution image processing. The experimental results demonstrate the effects when different up-sampling methods generally used such as zero-padding or bilinear interpolation are applied to the super-resolution image reconstruction. Then, we show that the proposed hybird up-sampling method generates high-resolution images more accurately than conventional methods with quantitative and qualitative assess measures.

Area Measurement of Organism Image using Super Sampling and Interpolation (수퍼 샘플링과 보간을 이용한 생물조직 영상의 면적 측정)

  • Choi, Sun-Wan;Yu, Suk-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1150-1159
    • /
    • 2014
  • This paper proposes a method for extracting tissue cells from an organism image by an electron microscope and getting the whole cell number and the area from the cell. In general, the difference between the cell color and the background is used to extract tissue cell. However, there may be a problem when overlapped cells are seen as a single cell. To solve the problem, we split them by using cell size and curvature. This method has a 99% accuracy rate. To measure the cell area, we compute two areas, the inside and boundary of the cell. The inside is simply calculated by the number of pixels. The cell boundary is obtained by applying super sampling, linear interpolation, and cubic spline interpolation. It improves the error rate, 18%, 19%, and 120% respectively, in comparison to the counting method that counts a pixel area as 1.

Evaluating Reliability of Rooftop Thermal Infrared Image Acquired at Oblique Vantage Point of Super High-rise Building (초고층건물의 사각조망에서 촬영된 지붕표면 열화상의 신뢰도 평가)

  • Ryu, Taek-Hyoung;Um, Jung-Sup
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.51-59
    • /
    • 2013
  • It is usual to evaluate the performance of the cool roof by measuring in-site rooftop temperature using thermal infra-red camera. The principal advantage of rooftop thermal infrared image acquired in oblique vantage point of super high-rise building as a remote sensor is to provide, in a cost-effective manner, area-wide information required for a scattered rooftop target with different colors, utilizing wide view angle and multi-temporal data coverage. This research idea was formulated by incorporating the concept of traditional remote sensing into rooftop temperature monitoring. Correlations between infrared image of super high-rise building and in-situ data were investigated to compare rooftop surface temperature for a total of four different rooftop locations. The results of the correlations analyses indicate that the rooftop surface temperature by the infrared images of super high-rise building alone could be explained yielding $R^2$ values of 0.951. The visible permanent record of the oblique thermal infra-red image was quite useful in better understanding the nature and extent of rooftop color that occurs in sampling points. This thermal infrared image acquired in oblique vantage point of super high-rise made it possible to identify area wide patterns of rooftop temperature change subject to many different colors, which cannot be acquired by traditional in-site field sampling. The infrared image of super high-rise building breaks down the usual concept of field sampling established as a conventional cool roof performance evaluation technique.

Single Image Super-Resolution Using CARDB Based on Iterative Up-Down Sampling Architecture (CARDB를 이용한 반복적인 업-다운 샘플링 네트워크 기반의 단일 영상 초해상도 복원)

  • Kim, Ingu;Yu, Songhyun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.242-251
    • /
    • 2020
  • Recently, many deep convolutional neural networks for image super-resolution have been studied. Existing deep learning-based super-resolution algorithms are architecture that up-samples the resolution at the end of the network. The post-upsampling architecture has an inefficient structure at large scaling factor result of predicting a lot of information for mapping from low-resolution to high-resolution at once. In this paper, we propose a single image super-resolution using Channel Attention Residual Dense Block based on an iterative up-down sampling architecture. The proposed algorithm efficiently predicts the mapping relationship between low-resolution and high-resolution, and shows up to 0.14dB performance improvement and enhanced subjective image quality compared to the existing algorithm at large scaling factor result.

Efficient Multi-scalable Network for Single Image Super Resolution

  • Alao, Honnang;Kim, Jin-Sung;Kim, Tae Sung;Lee, Kyujoong
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2021
  • In computer vision, single-image super resolution has been an area of research for a significant period. Traditional techniques involve interpolation-based methods such as Nearest-neighbor, Bilinear, and Bicubic for image restoration. Although implementations of convolutional neural networks have provided outstanding results in recent years, efficiency and single model multi-scalability have been its challenges. Furthermore, previous works haven't placed enough emphasis on real-number scalability. Interpolation-based techniques, however, have no limit in terms of scalability as they are able to upscale images to any desired size. In this paper, we propose a convolutional neural network possessing the advantages of the interpolation-based techniques, which is also efficient, deeming it suitable in practical implementations. It consists of convolutional layers applied on the low-resolution space, post-up-sampling along the end hidden layers, and additional layers on high-resolution space. Up-sampling is applied on a multiple channeled feature map via bicubic interpolation using a single model. Experiments on architectural structure, layer reduction, and real-number scale training are executed with results proving efficient amongst multi-scale learning (including scale multi-path-learning) based models.

A comparison of alternative estimators in view of the Rao-Hartley-Cochran sampling scheme

  • Hong, Ki-Hak;Lee, Gi-Sung;Son, Chang-Kyoon
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.181-187
    • /
    • 2006
  • In this paper we suggest a new alternative estimator for the characteristics that are pooly correlated with the selection probabilities by applying the Amahia et al.(1989)'s estimator to Rao-Hartley-Cochran sampling scheme and compare it with that of Rao(1966)'s under a super-population model.

  • PDF

A frame detection method for DVB-S2x superframe receivers based on beam-hopping satellite transmission (빔-호핑 위성 전송 기반의 DVB-S2x 슈퍼프레임 수신기를 위한 프레임 검출 기법)

  • Oh, Jonggyu;Oh, Dukgil
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.24-27
    • /
    • 2017
  • 본 논문에서는 빔-호핑 위성 전송 기반의 DVB-S2x 슈퍼프레임 수신기를 위한 프레임 검출 기법을 제안한다. 제안하는 검출 기법은 2 체배 오버샘플링 레이트에서(over-sampling rate)에서 동작을 수행하며, 슈퍼프레임의 헤더를 구성하는 start of super-frame (SOSF)과 super frame format indicator (SFFI)를 모두 이용하여 하드웨어 복잡도를 줄이면서도 견고하게 프레임을 검출할 수 있다.

  • PDF

A study on the determination of substrata using the information of exponential response rate by simulation studies (모의실험을 기반으로 지수형 응답률 보정을 위한 세부 층 결정에 관한 연구)

  • Min, Joo-Won;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.621-636
    • /
    • 2018
  • Research on the application of informative sampling technique has been conducted in order to reduce the influence of non-response. Chung and Shin (Korean Journal of Applied Statistics, 30, 993-1004, 2017) showed that the estimation accuracy improved when using exponential response rate information for the parameter estimation if the distribution of errors included in the super population model follows normal distribution. However this method divides the stratum into equally spaced substrata to obtain the sample weight of the informative sampling technique and shows that the accuracy of the estimation improves as the number of substrata increases. In this study, with the given number of total sample size, the optimal substratum boundary points are calculated using equal space, quantile, and LH algorithm; consequently, the results using those methods are compared through simulation. We also studied the criteria to determine the number of substrata and substratum boundaries that can be used in practice with various types of auxiliary variable distributions.

High-speed, High-resolution Phase Measuring Technique for Heterodyne Displacement Measuring Interferometers. (헤테로다인 변위 측정 간섭계의 고속, 고분해능 위상 측정)

  • 김승우;김민석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.203-206
    • /
    • 2002
  • One of the ever-increasing demands on the performances of heterodyne interferometers is to improve the measurement resolution, of which current state-of-the-art reaches the region of sub-nanometers. We propose a new scheme of phase-measuring electronics that reduces the measurement resolution without further increase in clock speed. Our scheme adopts a super-heterodyne technique that lowers the original beat frequency to a level of 1 MHz by mixing it with electrically generated reference signal. The technique enables us to measure the phase of Doppler shift with a resolution of 1.58 nanometer at a sampling rate of 1 MHz. To avoid the undesirable decrease in the maximum measurable speed caused by the lowered beat frequency, a special from of frequency up-down counting technique is combined with the super-heterodyning. This alloys performing required phase unwrapping simply by using programmable digital gates without 2$\pi$ ambiguities up to the maximum velocity of 2.35 m/s.

  • PDF

A Breakthrough in Sensing and Measurement Technologies: Compressed Sensing and Super-Resolution for Geophysical Exploration (센싱 및 계측 기술에서의 혁신: 지구물리 탐사를 위한 압축센싱 및 초고해상도 기술)

  • Kong, Seung-Hyun;Han, Seung-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.335-341
    • /
    • 2011
  • Most sensing and instrumentation systems should have very higher sampling rate than required data rate not to miss important information. This means that the system can be inefficient in some cases. This paper introduces two new research areas about information acquisition with high accuracy from less number of sampled data. One is Compressed Sensing technology (which obtains original information with as little samples as possible) and the other is Super-Resolution technology (which gains very high-resolution information from restrictively sampled data). This paper explains fundamental theories and reconstruction algorithms of compressed sensing technology and describes several applications to geophysical exploration. In addition, this paper explains the fundamentals of super-resolution technology and introduces recent research results and its applications, e.g. FRI (Finite Rate of Innovation) and LIMS (Least-squares based Iterative Multipath Super-resolution). In conclusion, this paper discusses how these technologies can be used in geophysical exploration systems.