We have developed a prototype super-high-definition (SHD) digital cinema distribution system that can store, transmit, and display eight-million-pixel motion pictures that have the image quality of a 35-mm film movie. The system contains a movie server, a real-time decoder, and an SHB projector. Using a Gigabit Ethernet link and TCP/IP, the server transmits JPEG2000 compressed motion picture data streams to the decoder at transmission speeds as high as 300 Mbps. The received data streams are decompressed by the decoder, and then projected onto a screen via the projector. By using an enlarged TCP window, multiple TCP streams, and a shaping function to control the data transmission quantity, we achieved real-time streaming of SHD movie data at about 300 Mbps between Chicago and Los Angeles, a distance of more than 3000 km. We also improved the decoder performance to show movies with Image qualities of 450 Mbps or higher. Since UDP is more suitable than TCP for fast long-distance streaming, we have developed an SHD digital cinema UDP relay system, in which UDP is used for transmission over a fast long-distance network. By using four pairs of server-side-proxy and decoder-side-proxy, 450-Mbps movie data streams could be transmitted.
최근 UHDTV(ultra high definition television)가 가정에 보급이 많이 되고 있는 추세지만, UHD급 콘텐츠가 매우 부족한 실정이다. 따라서 저해상도 FHD(full high definition) 영상을 고해상도 영상으로 변환시켜 재활용할 수 있는 초해상화(super-resolution, SR) 기술의 필요성이 커졌다. 그 중, 다층의 레이어로 구성된 다층 선형 매핑(multi-layer linear mappings, MLLM)을 기반으로 하는 제안된 초해상화 기법은 상대적으로 낮은 복잡도로 좋은 품질의 고해상도 영상을 복원할 수 있었다. 최근에는 강화 예측법을 추가하여 복원된 고해상도 영상의 품질을 더 향상시키는 기법이 등장하였는데, 이를 바탕으로 본 논문에서는 제안했었던 MLLM 기법을 위한 강화 예측법 기법을 새롭게 제안한다. 제안하는 초해상화 기법은 기존 MLLM 기법과 딥러닝 기반 초해상화 기법보다 높은 품질의 고해상도 영상을 생성하는 것을 확인하였다.
본 논문에서는 학습된 사전 기반 초해상도 결과를 개선하기 위해 분석한 손실 영역을 기반으로 학습 데이터를 적용하는 방법을 제안하였다. 기존의 학습된 사전 기반 방법은 입력 영상의 특징을 고려하지 않는 학습된 영상의 형태로 출력할 수 있으며, 이 과정에서 인공물이 발생할 수 있다. 제안하는 방법은 입력 영상과 학습된 영상의 일치하지 않는 특징으로 인한 인공물 발생을 줄이기 위해 1차 복원 결과를 분석함으로써 손실 정보를 추정하였다. 추정된 결과의 잡음 및 화소 불균형을 가우시안 기반의 커널로 개선하여 생성된 특징 맵에 따라 학습 데이터를 매핑하였다. 결과 비교를 위해 기존의 초해상도 방법과 제안 방법의 결과를 고화질 영상과 PSNR(Peak Signal to Noise Ratio), SSIM(Structural SIMilarity Index) 으로 비교한 결과 각각 4%와 3%의 향상된 결과를 확인하였다.
최근 UHDTV(ultra high definition television) 등의 고해상도 디스플레이가 시장에 등장하면서, 기존의 저해상도 FHD(full high definition) 영상을 고해상도 영상으로 변환할 수 있는 초해상화(super-resolution, SR) 기법들이 각광을 받고 있다. 그 중, 선형 매핑(linear mapping)을 사용하여 저해상도 패치(patch)로부터 고해상도 패치를 복원하는 초해상화 기법은 상대적으로 낮은 복잡도로 좋은 품질의 고해상도 영상을 생성한다. 그러나 이러한 기법은 단순한 선형 매핑을 기반으로 하기 때문에 복잡한 비선형적(nonlinear) 저해상도-고해상도 관계를 예측하기 힘든 단점이 있다. 최근 각광받는 딥러닝(deep learning) 기술은 다층(multi-layer) 네트워크를 쌓아 입력과 출력 간의 복잡한 비선형 관계를 훈련시켜 좋은 성능을 보이는데, 이를 바탕으로 본 논문에서는 다중의 레이어로 구성된 다층 선형 매핑(multi-layer linear mappings, MLLM)을 기반으로 하는 초해상화 기법을 새롭게 제안한다. 제안하는 다층 선형 매핑은 기존 선형 매핑보다 비선형적 관계를 더 잘 예측하여 높은 품질의 고해상도 영상을 생성할 수 있게 한다. 제안된 초해상화 기법은 딥러닝 기반 초해상화 기법과 필적하는 품질의 고해상도 영상을 생성하면서도 더 낮은 복잡도를 지니는 것을 확인하였다.
최근 고성능 모바일기기의 보급과 멀티미디어 콘텐츠의 활용이 커짐에 따라 저해상도 영상을 고해상도로 재구성하는 초해상도(super resolution) 기법이 중요하게 대두되고 있다. 모바일기기에서는 초해상도를 사용하기 위해서는 연산량과 메모리 등의 제한적인 자원의 사용을 고려한 초해상도 알고리즘이 요구된다. 본 논문에서는 모바일기기에 적용하기 위해 단일영상을 통한 빠른 초해상도 기법을 제안한다. 제안한 알고리즘은 색채 왜곡을 방지하기 위해 RGB 컬러 도메인에서 HSV 컬러 도메인으로 변경하여 인간의 시각인지 특성이 가장 뚜렷한 밝기정보인 V만 처리한다. 먼저 잡음제거 및 속도향상을 고려하여 개선된 고속 back projection에 의해 영상을 확대 재구성한다. 이와 함께 2차 미분을 사용하는 LoG (laplacian of gaussian) 필터링을 이용하여 신뢰할 수 있는 에지 맵을 추출한다. 최종적으로 에지 정보와 개선된 back projection 결과를 이용하여 고해상도 영상을 재구성한다. 제안한 알고리즘을 사용하여 복원한 영상은 부자연스러운 인공물을 효과적으로 제거하고, blur현상을 최소화하여 에지 정보를 보정하고 강조해준다. 실험결과를 통해 제안하는 알고리즘이 기존의 보간법이나 전통적인 back projection 결과보다 주관적인 화질이 우수하고, 객관적으로 우수한 성능을 나타냄을 입증한다.
본 논문에서는 스테레오 영상에서 좌·우측 영상을 입력 받아 거리변화와 임베디드 데이터를 이용해 얼굴인식률을 PCA알고리듬으로 비교한다. 제안된 방법에서는 RGB컬러공간에서 YCbCr컬러공간으로 변환하여 얼굴영역을 검출한다. 또한 거리변화에 따라 추출된 얼굴영상의 확대 및 축소하여 보다 강건한 얼굴영역을 추출한다. 실험을 통하여 제안된 방법은 30cm∼200cm 정도의 거리에서 기준 거리(100cm)를 설정하고, 스케일 변화에 따른 평균적인 인식결과로 99.05%(100cm)의 인식률을 얻을 수 있었다. 정규화된 크기(92×112)에서 특정영역인 슈퍼 상태를 정의하고, 각각 정의된 슈퍼 상태의 내부요소인 임베디드 데이터만을 추출하여 PCA 알고리듬을 통하여 얼굴인식을 수행하였다. 원본영상을 모두 학습하는 것이 아니라 임베디드 데이터만을 학습시키기 때문에 제한된 영상의 크기(92×112)에서 특정 데이터를 받아들일 수 있으며, 평균적으로 92×112크기의 영상에서는 99.05%, 실험1은 99.05%, 실험2는 98.93%, 실험3은 98.54%, 실험4는 97.85%의 얼굴인식률을 보였다. 따라서 실험을 통하여 제안된 방법은 거리변화율을 적용하면 높은 인식률을 얻을 수 있음을 보였으며, 얼굴정보를 축소할 뿐만 아니라 처리속도도 향상되었다.
최근 UHDTV와 같은 고품질, 고화질을 기본으로 현장감을 제공하는 방송 디스플레이 환경이 요구됨에 따라 다양한 4K 카메라들이 출시되고 있다. 일반적으로 사용되고 있는 Super 35mm 센서의 4K/UHD 카메라는 광고, 드라마, 자연다큐멘터리, 교양 등 싱글 카메라 제작 시스템에는 활용도가 높다. 하지만 예능, 스포츠, 콘서트 등 멀티카메라 제작시스템에서는 거리에 따라 클로즈 업(close-up)이나 타이트 샷(tight shot)의 한계점을 가짐에 따라 방송 중계에 제약이 따른다. 또한 4K 렌즈는 기존의 HD 렌즈 군에 비해 부족한 실정이라 HD 제작 시 구현되었던 카메라 촬영 샷에 제한이 따른다. 따라서 이를 보완하기 위한 2/3inch 센서 4K/UHD 카메라의 활용이 요구되고 있으며, 다양한 렌즈군의 활용으로 UHD 영상 콘텐츠 제작이 요구되고 있다. 본 연구는 Grass Valley 사의 LDX 4K/UHD카메라를 사용하여 2/3" 센서에서의 HD급 렌즈 활용에서의 화질 테스트를 통해 활용 가능성에 대해 분석하고, 이를 효율적인 활용 가능성을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.