• Title/Summary/Keyword: Sun-Tracking

Search Result 557, Processing Time 0.026 seconds

Analysis of Sun Tracking Performance of Various Types of Sun Tracking System used in Parabolic Dish Type Solar Thermal Power Plant (접시형 태양열 발전시스템에서 사용하는 여러 가지 형태의 태양추적시스템의 태양추적성능 분석)

  • Seo, Dong-Hyeok;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.388-396
    • /
    • 2011
  • Sun tracking system is the most important subsystem in parabolic dish type solar thermal power plant, since it determines the amount of thermal energy to be collected, thus affects the efficiency of solar thermal power plant most significantly. Various types of sun tracking systems are currently used. Among them, use of photo sensors to located the sun(which is called sensor type) and use of astronomical algorithm to compute the sun position(which is called program type) are two of the mostly used methods. Recently some uses CCD sensor, like CCD camera, which is called image processing type sun tracking system. This work is concerned with the analysis of sun tracking performance of various types of sun tracking systems currently used in the parabolic dish type solar thermal power plant. We first developed a sun tracking error measurement system. Then, we evaluate the performance of five different types of sun tracking systems, sensor type, program type, hybrid type(use of sensor and computed sun position simultaneously), tracking error compensated program type and image processing type. Experimentally obtained data shows that the tracking error compensated program type sun tracking system is very effective and could provide a good sun tracking performance. Also the data obtained shows that the performance of sensor type sun tracking system is being affected by the cloud significantly, while the performance of a program type sun tracking system is being affected by the sun tracking system's mechanical and installation errors very much. Finally image processing type sun tracking system can provide accurate sun tracking performance, but costs more and requires more computational time.

A Evaluation of Sun Tracking Performance of Parabolic Dish Concentrator using Vision System (비전시스템을 이용한 태양추적시스템의 추적정밀도 평가)

  • 안효진;박영칠
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.408-408
    • /
    • 2000
  • A parabolic dish concentrator used in a high temperature application of solar energy tracks the sun's movement by two axis sun tracking system. In such a system, sun tracking performance affects the system efficiency directly. Generally the higher the tracking accuracy is, the better the system performance is. A large number of parabolic dish type concentrators has been developed and implemented in the world. However none of them clearly provided a qualitative method of how the accuracy of the sun tracking system can be evaluated. The work presented here is the evaluation of sun tracking performance of parabolic dish concentrator, which follows the sun's movement by the sensor, using computer vision system. We install a camera on the parabolic dish concentrator. While the concentrator follows the sun, sun's images are captured continuously. Then the performance of sun tracking system was evaluated by analyzing the variation of the position of the sun in the images.

  • PDF

Measurement and Compensation of Heliostat Sun Tracking Error Using BCS (Beam Characterization System) (광특성분석시스템(BCS)을 이용한 헬리오스타트 태양추적오차의 측정 및 보정)

  • Hong, Yoo-Pyo;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.502-508
    • /
    • 2012
  • Heliostat, as a concentrator to reflect the incident solar energy to the receiver, is the most important system in the tower-type solar thermal power plant since it determines the efficiency and ultimately the overall performance of solar thermal power plant. Thus, a good sun tracking ability as well as a good optical property of it are required. Heliostat sun tracking system uses usually an open loop control system. Thus the sun tracking error caused by heliostat's geometrical error, optical error and computational error cannot be compensated. Recently use of sun tracking error model to compensate the sun tracking error has been proposed, where the error model is obtained from the measured ones. This work is a development of heliostat sun tracking error measurement and compensation method using BCS (Beam Characterization System). We first developed an image processing system to measure the sun tracking error optically. Then the measured error is modeled in linear polynomial form and neural network form trained by the extended Kalman filter respectively. Finally error models are used to compensate the sun tracking error. We also developed the necessary image processing algorithms so that the heliostat optical properties such as maximum heat flux intensity, heat flux distribution and total reflected heat energy could be analyzed. Experimentally obtained data shows that the heliostat sun tracking accuracy could be dramatically improved using either linear polynomial type error model or neural network type error model. Neural network type error model is somewhat better in improving the sun tracking performance. Nevertheless, since the difference between two error models in compensation of sun tracking error is small, a linear error model is preferred in actual implementation due to its simplicity.

A Performance Evaluation of Sensor Type Sun Tracking System (센서식 태양추적시스템의 추적정밀도 평가)

  • Park, Y.C.;Kang, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.55-62
    • /
    • 2001
  • A parabolic dish concentrator used in a high temperature application of solar energy tracks the sun's movement by two axis sun tracking system. In such a system, sun tracking performance affects the system efficiency directly. Generally the higher the tracking accuracy is, the better the system performance is. A large number of parabolic dish type concentrators has been developed and implemented in the world. However none of them clearly provided a qualitative method of how the accuracy of the sun tracking system can be evaluated. The work presented here is the evaluation of sun tracking performance of parabolic dish concentrator, which follows the sun's movement by the sensor, using a computer vision system. We install a camera on the parabolic dish concentrator. While the concentrator follows the sun, sun's images are captured continuously. Then the performance of sun tracking system was evaluated by analyzing the variation of the position of the sun in the captured images.

  • PDF

A Study on the Development of Two Axes Sun Tracking System for the Parabolic Dish Concentrator (Parabolic Dish형 태양열 집열기를 위한 2축 태양추적장치의 개발에 관한 연구)

  • Park, Y.C.;Kang, Y.H.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.81-91
    • /
    • 1999
  • The work presented here is a design and development of sun tracking system for the parabolic dish concentrator. Parabolic dish concentrator is mounted on azimuth and elevation tracking mechanism, and controlled to track the sun with computed and measured sun positions. Sun tracking mechanism is composed of 1/30000 speed reducer(3 stages) and 400W AC servomotor for each axis. The nominal tracking speed of each axis is ${\pm}0.6^{\circ}/sec$ and the system has a driving range of $340^{\circ}$ in azimuth and of $135^{\circ}$ in elevation. Sun tracking control system consists of sun sensor, wind speed and direction measurement system, AC servomotor position control system and personal computer as a master controller. Sun sensor detects the sun located within ${\pm}50^{\circ}$ measured from the sun sensor normal direction. Computer computes the sun position, sunrise and sunset times and controls the orientation of parabolic dish concentrator through the AC servomotor position control system. It also makes a decision of whether the system should follow the sun or not based on the information collected from sun sensor and wind speed and direction measurement system. The sun tracking system developed in this work is implemented for the experimental work and shows a good sun tracking performance.

  • PDF

Comments on the Computation of Sun Position for Sun Tracking System (태양추적장치를 위한 태양위치계산에서의 제언)

  • Park, Young Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.47-59
    • /
    • 2016
  • As the usage of sun tracking system in solar energy utilization facility increases, requirement of more accurate computation of sun position has also been increased. Accordingly, various algorithms to compute the sun position have been proposed in the literature and some of them insist that their algorithms guarantee less than 0.01 degree computational error. However, mostly, the true meaning of accuracy argued in their publication is not clearly explained. In addition to that, they do not clearly state under what condition the accuracy they proposed can be guaranteed. Such ambiguity may induce misunderstanding on the accuracy of the computed sun position and ultimately may make misguided notion on the actual sun tracking system's sun tracking accuracy. This work presents some comments related to the implementation of sun position computational algorithm for the sun tracking system. We first introduce the algorithms proposed in the literature. And then, from sun tracking system user's point of view, we explain the true meaning of accuracy of computed sun position. We also discuss how to select the proper algorithm for the actual implementation. We finally discuss how the input factors used in computation of sun position, like time, position etc, affect the computed sun position accuracy.

Compensation of Sun Tracking Error caused by the Heliostat Geometrical Error through the Canting of Heliostat Mirror Facets (반사거울 설치 방향 조정에 의한 Heliostat 기구오차에서 기인하는 태양추적오차의 보정)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.22-31
    • /
    • 2009
  • Canting is the optical alignment of mirror facets of heliostat such that the heliostat could focus the energy as a unit concentrator. Canting could improve the optical performance of heliostat and thus improves the efficiency of heliostat and ultimately improves the efficiency of the solar thermal power plant. This study discusses the effect of mirror canting, especially off-axis canting, used to compensate the sun tracking error caused by the heliostat geometrical errors. We first show that the canting could compensate the sun tracking error caused by the heliostat geometrical errors. Then we show that the proper canting time could exist, depending on the heliostat location. Finally we show how much the sun tracking performance could be improved by canting, by providing RMS sun tracking error. The limitation and caution of using canting to improve the sun tracking performance are also discussed.

A Development of Sun Tracking Control System for Parabolic Trough Concentrator (PTC용 태양 추적 장치의 개발)

  • Park, Y.C.;Kwak, H.Y.;Kang, Y.H.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.25-30
    • /
    • 1998
  • A sun tracking controller for PTC(parabolic trough concentrator) is a control system used to orient the concentrator toward the sun always, so that the maximum energy can be collected. The work presented here is a design and development of microprocessor based sun tracking control system for PTC. Sun tracking control system consists of a sun sensor and a single axis tracking control system. 80c196KC based control system consists of an analog input unit, 24V DC servomotor drive unit, I/O unit. Sun sensor has been constructed using photodiode and can detect the sun located within ${\pm}50^{\circ}$ measured from the sun sensor normal direction. The sun tracking system developed is being implemented and shows a good sun tracking performance.

  • PDF

Analysis of Sun Tracking Error Caused by the Heliostat Driving Axis Geometrical Error Utilizing the Solar Ray Tracing Technique (태양광선 제적추적기법을 이용한 Heliostat 구동축 기구오차에서 기인하는 태양추적오차의 분석)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.39-46
    • /
    • 2009
  • Heliostat, as a mirror system tracking the sun's movement, is the most important subsystem determining the efficiency of solar thermal power plant. Thus the accurate sun tracking performance under the various hazardous operating condition, is required. This study presents a methodology of development of the solar ray tracing technique and the application of it in the analysis of sun tracking error due to the heliostat geometrical errors. The geometrical errors considered here are the azimuth axis tilting error and the elevation axis tilting error. We first analyze the geometry of solar ray reflected from the heliostat. Then the point on the receiver, where the solar ray reflected from the heliostat is landed, is computed and compared with the original intended point, which represents the sun tracking error. The result obtained shows that the effect of geometrical error on the sun tracking performance is varying with time(season) and the heliostat location. It also shows that the heliostat located near the solar tower has larger sun tracking error than that of the heliostat located farther.

Design of Sun Tracker System for Solar Power Generation (태양광 발전을 위한 태양추적시스템 설계)

  • An, Jun-Sik;Heo, Nam-Euk;Kim, Il-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.330-332
    • /
    • 2006
  • In this paper, sun tracking system using Sun position sensor is proposed, the sun tracking system designed as which raises the efficiency of solar power generation. It design the structure being simple and it develops the system which is economical efficiency. It develops the hazard technique such as location tracking method of the sun which uses the sensor and to use the motor solar cell module movement. The Sun tracking system makes the drive in order to do with one axis and to use the sensor and to know in order to put out, the location of the sun and it makes. To make the solar location tracking sensor where the structure is simple it used two solar cells.

  • PDF