• Title/Summary/Keyword: Sun Ginseng

Search Result 714, Processing Time 0.032 seconds

Changes in the Contents of Prosapogenin in Ginseng Radix Palva (Panax ginseng) Depending on the Extracting Conditions (미삼의 추출 조건에 따른 인삼 프로사포게닌 성분 변화)

  • Lee, Sun-A;Jo, Hee-Kyung;Sung, Min-Chang;Cho, Soon-Hyun;Song, You-Chan;Im, Byung-Ok;Ko, Sung-Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.2
    • /
    • pp.152-156
    • /
    • 2012
  • This study compared the contents of ginseng prosapogenin depending on the extracting conditions of Ginseng Radix palva(Panax ginseng) to provide basic information for developing Ginseng Radix palva-based functional foods. Our findings show that the content of crude saponin peaked at 18 hours of extraction and when extracted twice at $100^{\circ}C$ (GRP-18). However, the content of total saponin reached its height at 6 hours of extraction at $100^{\circ}C$ (GRP-6) and when extracted twice. On the other hand, the content of ginsenoside $Rg_3$, $Rg_5$ and $Rk_1$ from Red and Black ginseng reached their heights at 18 hours of extraction, followed by 72 hours and 15 hours of extraction at $100^{\circ}C$. And at $100^{\circ}C$ the main prosapogenin of the content of Black ginseng ginsenoside $Rg_5$ and $Rk_1$ reached their heights at 18 hours of extraction, followed by 72 hours and 15 hours of extraction.

Changes in Ginsenoside Composition of White Ginseng by Fermentation

  • Ko, Sung-Kwon;Cho, Ok-Sun;Bae, Hye-Min;Yang, Byung-Wook;Im, Byung-Ok;Hahm, Young-Tae;Kim, Kyung-Nam;Cho, Soon-Hyun;Kim, Jae-Young;Chung, Sung-Hyun;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.253-256
    • /
    • 2009
  • The purpose of the study was to develop a new process to manufacture ginseng extract containing saponin aglycon of high concentration. The process to transform saponin glycosides to saponin aglycon was analyzed by high performance liquid chromatography (HPLC). GCK-1 (open cultured mixture for 1 day at $42^{\circ}C$) had the highest content of protopanaxadiol (0.662%). However, other mixtures (GCK-2, 3, 4, 5, and 6) had less than 0.152% in the content of protopanaxadiol. In case of fermentation by inoculation of Bacillus natto, BNG-5 (B. natto inoculated mixture for 5 days at $42^{\circ}C$) showed the highest content of protopanaxadiol (0.364%). Other mixtures (BNG-1, 2, 3, 4, and 6) also showed the high content of more than 0.2% in protopanaxadiol. B. natto inoculation or open culture fermentation with soybean transformed ginseng saponin glycosides into saponin aglycon.

Physicochemical Characteristics of 3-Year-Old Ginseng by Various Seeding Density in Direct-Sowing Culture (파종밀도에 따른 직파재배 3년근 인삼의 수량 및 품질 특성)

  • Seong, Bong-Jae;Kim, Gwan-Hou;Kim, Hyun-Ho;Kim, Sun-Ick;Han, Seung-Ho;Lee, Ka-Soon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.1
    • /
    • pp.22-27
    • /
    • 2010
  • This study was carried out to investigate the physicochemical characteristics of 3-year-old ginseng (for Samgyetang product) cultured by various seeding density in direct-sowing culture. Ginsengs were cultured by the seeding density, 275, 300, 330 352 and 396 seeds per Kan, $180{\times}90cm$ area. Survived rate (82.1%) were the highest in plot of 352 seeds sowed, length and leaf width were high in plot of 300 and 352 seeds. Root yield grain was increased with increase of the seeding density in direct-sowing culture except 352 seeds sowed. Average root weight and diameter were the highest in plot of 352 seeds sowed, 31.6 g and 18.4 mm, respectively. Crude saponin and each ginsenosides content were the highest in plot of 275 seeds sowed. Rg1 content was decreased, Rc and Rb2 content were increased with increase of the seeding density. Total soluble sugar content was the highest in plot of 330 seeds sowed and the lowest in plot of 396 seeds sowed, and oligo- and disaccaride content were high in plot of 330 and 352 seeds sowed. Reological characteristics of ginsengs cultivated according to various seeding density, hardness and springness were high and maximum fracture force was low with decrease of the seeding quantity.

A Study on Thermal Effect and Medication Compliance of Red Ginseng Extract (홍삼의 온열 효과와 복약 순응도에 관한 연구)

  • Choi, Min-Sun;Jeong, Jae-Cheol;Park, Jang-Kyung;Ahn, Hong-Yeop;Kim, Dong-Il
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.3
    • /
    • pp.223-235
    • /
    • 2009
  • Purpose: To evaluate thermal effect and medication compliance of red ginseng extract. Methods: Randomized, double-blind, placebo-controlled, cross-over clinical study was performed. Twenty four healthy, married women aged 30-45 years with FSFI score below 25 were randomly divided into two groups; red ginseng group(N=12) and placebo group(N=12). During the first 6-week period (Study1), each group was dosed with red ginseng or placebo twice a day. Before starting the second 6-week period(Study2), a crossover design was chosen with a 2-week break(Washout period). Interchanging two groups after Washout period, red ginseng and placebo were dosed to each group. The efficacy of thermal effect was measured with subjective warm sensation scale and lower abdomen temperature by Digital Infrared Thermographic imaging(DITI) before and after each 6-week period. A medication compliance was assessed after each 6-week period and the correlation medication compliance between Sasang Constitution and subjective warm sensation was analyzed. Results: Overall 23 participants completed the study. In subjective warm sensation scale, after taking placebo, all participants exhibited an improving trend, but there was no significant difference. In lower abdomen temperature by DITI, statistically significant objective thermal effect of red ginseng was also not shown. A medication compliance was higher in Yin constitution(Taeumin, Soeumin), and showed an upward trend with decreasing subjective warm sensation. But no statistically significant difference was exhibited. Conclusion: Statistically significant thermal effect of red ginseng was not shown in this study. We anticipate if a long-term clinical trial is practiced, significant thermal effect of red ginseng will be shown.

Effects of Korean Red Ginseng Extract on Cisplatin-Induced Nausea and Vomiting

  • Kim Jong-Hoon;Yoon In-Soo;Lee Byung-Hwan;Choi Sun-Hye;Lee Jun-Ho;Lee Joon-Hee;Jeong Sang Min;Kim Seok-Chang;Park Chae-Kyu;Lee Sang-Mok;Nah Seung-Yeol
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.680-684
    • /
    • 2005
  • Ginseng, the root of Panax ginseng CA Meyer, is well known as a tonic medicine for restoring and enhancing human health. In traditional medicine, ginseng is utilized for the alleviation of emesis, which includes nausea and vomiting. However, it has not yet been demonstrated whether ginseng exhibits in vivo anti-nausea and anti-vomiting properties. In this study, we examined the anti-emetic effect of Korean red ginseng total extract (KRGE) on cisplatin-induced nausea and vomiting using ferrets. Intraperitoneal administration (i.p.) of cisplatin (7.5 mg/kg) induced both nausea and vomiting with one-hour latency. The episodes of nausea and vomiting reached a peak after 1.5 h and persisted for 3 h. Treatment with KRGE via oral route significantly reduced the cisplatin-induced nausea and vomiting in a dose-dependent manner. The anti-emetic effect was 12.7 $\pm$ 8.6, 31.8 $\pm$ 6.9, and 67.6 $\pm$ 4.0$\%$ with doses of 0.3, 1.0, and 3.0 g/kg of KRGE, respectively. Pretreatment with KRGE via oral route 1 and 2 h before cisplatin administration also significantly attenuated the cisplatin-induced nausea and vomiting. However this did not occur with a pretreatment 4 h before cisplatin administration. These results are supportive of KRGE being utilized as an anti-emetic agent against nausea and vomiting caused by chemotherapy (i.e. cisplatin).

Characterization of Root Transcriptome among Korean Ginseng Cultivars and American Ginseng using Next Generation Sequencing (차세대염기서열 분석을 이용한 고려인삼과 미국삼의 전사체 분석)

  • Jo, Ick Hyun;Kim, Young Chang;Lee, Seung Ho;Kim, Jang Uk;Kim, Sun Tae;Hyun, Dong Yun;Kim, Dong Hwi;Kim, Kee Hong;Kim, Hong Sig;Chung, Jong Wook;Bang, Kyong Hwan
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.5
    • /
    • pp.339-348
    • /
    • 2014
  • The transcriptomes of four ginseng accessions such as Cheonryang (Korean ginseng cultivar), Yunpoong (Korean ginseng cultivar), G03080 (breeding line of Korean ginseng), and P. quinquefolius (American ginseng) was characterized. As a result of sequencing, total lengths of the reads in each sample were 156.42 Mb (Cheonryang cultivar), 161.95 Mb (Yunpoong cultivar), 165.07 Mb (G03080 breeding line), and 166.48 Mb (P. quinquefolius). Using a BLAST search against the Phytozome databases with an arbitrary expectation value of 1E-10, over 20,000 unigenes were functionally annotated and classified using DAVID software, and were found in response to external stress in the G03080 breeding line, as well as in the Cheonryang cultivar, which was associated with the ion binding term. Finally, unigenes related to transmembrane transporter activity were observed in Cheonryang and P. quinquefolius, which involves controlling osmotic pressure and turgor pressure within the cell. The expression patterns were analyzed to identify dehydrin family genes that were abundantly detected in the Cheonryang cultivar and the G03080 breeding line. In addition, the Yunpoong cultivar and P. quinquefolius accession had higher expression of heat shock proteins expressed in Ricinus communis. These results will be a valuable resource for understanding the structure and function of the ginseng transcriptomes.

Major ginsenosides from Panax ginseng promote aerobic cellular respiration and SIRT1-mediated mitochondrial biosynthesis in cardiomyocytes and neurons

  • Huang, Qingxia;Lou, Tingting;Lu, Jing;Wang, Manying;Chen, Xuenan;Xue, Linyuan;Tang, Xiaolei;Qi, Wenxiu;Zhang, Zepeng;Su, Hang;Jin, Wenqi;Jing, Chenxu;Zhao, Daqing;Sun, Liwei;Li, Xiangyan
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.759-770
    • /
    • 2022
  • Background: Aerobic cellular respiration provides chemical energy, adenosine triphosphate (ATP), to maintain multiple cellular functions. Sirtuin 1 (SIRT1) can deacetylate peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) to promote mitochondrial biosynthesis. Targeting energy metabolism is a potential strategy for the prevention and treatment of various diseases, such as cardiac and neurological disorders. Ginsenosides, one of the major bioactive constituents of Panax ginseng, have been extensively used due to their diverse beneficial effects on healthy subjects and patients with different diseases. However, the underlying molecular mechanisms of total ginsenosides (GS) on energy metabolism remain unclear. Methods: In this study, oxygen consumption rate, ATP production, mitochondrial biosynthesis, glucose metabolism, and SIRT1-PGC-1α pathways in untreated and GS-treated different cells, fly, and mouse models were investigated. Results: GS pretreatment enhanced mitochondrial respiration capacity and ATP production in aerobic respiration-dominated cardiomyocytes and neurons, and promoted tricarboxylic acid metabolism in cardiomyocytes. Moreover, GS clearly enhanced NAD+-dependent SIRT1 activation to increase mitochondrial biosynthesis in cardiomyocytes and neurons, which was completely abrogated by nicotinamide. Importantly, ginsenoside monomers, such as Rg1, Re, Rf, Rb1, Rc, Rh1, Rb2, and Rb3, were found to activate SIRT1 and promote energy metabolism. Conclusion: This study may provide new insights into the extensive application of ginseng for cardiac and neurological protection in healthy subjects and patients.

Comparative Study on Immuno-Enhancing Effects of Red Ginseng Fractions (홍삼의 분획에 따른 면역활성 비교)

  • Hyun, Sun Hee;Kim, Eun Sun;Lee, Sang Min;Kyung, Jong Soo;Lee, Sang Myung;Lee, Jong Won;Kim, Mee Ree;Hong, Jin Tae;Kim, Young Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1665-1673
    • /
    • 2014
  • The objective of this study was to compare the compositions and immuno-enhancing effects of 6-year-old red ginseng powder (RGP) with those of its fractions. RGP was subjected to extraction with 100% ethanol to obtain an ethanol fraction (E) and residue 1 (R1). Then, R1 was subjected to extraction with distilled water to obtain water fraction (W) and residue 2 (R2). Chemical compositions were as follows: 4.94% acidic polysaccharides and 1.56% ginsenosides (amounts of Rg1, Re, Rf, Rg2, Rb1, Rc, Rd, and Rg3) in RGP, 0.11% acidic polysaccharides and 6.99% ginsenosides in E, 4.93% acidic polysaccharides and 0.40% ginsenosides in R1, 0.50% acidic polysaccharides and 0.30% ginsenosides in R2, and 7.46% acidic polysaccharides and 0.61% ginsenosides in W. Immuno-enhancing effects of fractions from RGP were examined based on suppression of immune responses by cyclophosphamide. In the first fraction test, the antibody response to SRBCs increased significantly in the R1-treated group, but not the E-treated group. In the second fraction test, W showed higher immuno-enhancing effect than R1 and R2. W, which contained the highest amount of acidic polysaccharides, restored numbers of T and B cells, macrophages, as well as $CD4^+$ and $CD8^+$ T cells in the spleen suppressed by cyclophosphamide. These results suggest that acidic polysaccharides from red ginseng may be more effective than saponin in enhancing immune functions and reducing immunotoxicity of cyclophosphamide.

Antioxidant and hepatoprotective effects of Korean ginseng extract GS-KG9 in a D-galactosamine-induced liver damage animal model

  • Jo, Yun Ho;Lee, Hwan;Oh, Myeong Hwan;Lee, Gyeong Hee;Lee, You Jin;Lee, Ji Sun;Kim, Min Jung;Kim, Won Yong;Kim, Jin Seong;Yoo, Dae Seok;Cho, Sang Won;Cha, Seon Woo;Pyo, Mi Kyung
    • Nutrition Research and Practice
    • /
    • v.14 no.4
    • /
    • pp.334-351
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: This study was designed to investigate the improvement effect of white ginseng extract (GS-KG9) on D-galactosamine (Ga1N)-induced oxidative stress and liver injury. SUBJECTS/METHODS: Sixty Sprague-Dawley rats were divided into 6 groups. Rats were orally administrated with GS-KG9 (300, 500, or 700 mg/kg) or silymarin (25 mg/kg) for 2 weeks. The rats of the GS-KG9- and silymarin-treated groups and a control group were then intraperitoneally injected Ga1N at a concentration of 650 mg/kg for 4 days. To investigate the protective effect of GS-KG9 against GalN-induced liver injury, blood liver function indicators, anti-oxidative stress indicators, and histopathological features were analyzed. RESULTS: Serum biochemical analysis indicated that GS-KG9 ameliorated the elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in GalN-treated rats. The hepatoprotective effects of GS-KG9 involved enhancing components of the hepatic antioxidant defense system, including glutathione, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). In addition, GS-KG9 treatment inhibited reactive oxygen species (ROS) production induced by GalN treatment in hepatocytes and significantly increased the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins, which are antioxidant proteins. In particular, by histological analyses bases on hematoxylin and eosin, Masson's trichrome, α-smooth muscle actin, and transforming growth factor-β1 staining, we determined that the administration of 500 mg/kg GS-KG9 inhibited hepatic inflammation and fibrosis due to the excessive accumulation of collagen. CONCLUSIONS: These findings demonstrate that GS-KG9 improves GalN-induced liver inflammation, necrosis, and fibrosis by attenuating oxidative stress. Therefore, GS-KG9 may be considered a useful candidate in the development of a natural preventive agent against liver injury.

Isolation of Cysteine Proteinase Gene (PgCysP1) from Panax ginseng and Response of This Gene to Abiotic Stresses (인삼으로부터 Cysteine Proteinase 유전자의 분리 및 환경 스트레스에 대한 반응)

  • Jeong, Dae-Young;Kim, Yu-Jin;Shim, Ju-Sun;Lee, Jung-Hye;In, Jun-Gyo;Lee, Bum-Soo;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.300-304
    • /
    • 2008
  • Cysteine proteinases play an essential role in plant growth and development but also in senescence and programmed cell death. They participate in both anabolic and catabolic processes. In addition, they are involved in signalling pathways and in the response to biotic and abiotic stresses. A cDNA clone encoding cysteine proteinase (CP) gene, designated PgCysP1, was isolated from Panax ginseng C. A. Meyer. Reverse transcriptase (RT)-PCR results showed that PgCysP1 expressed at different level in P. ginseng hairy root. Different stresses such as biotic as well as abiotic stresses triggered a significant induction of PgCysP1. The positive responses of PgCysP1 to the various stimuli suggested that PgCysP1 may help to protect the plant against reactive environmental stresses.