• 제목/요약/키워드: Sun: solar wind

검색결과 105건 처리시간 0.023초

태양전지를 이용한 LED 가로등의 태양광 추적 장치 설계 (A Design of the Solar Tracker for LED Streetlight in Using Solar Cell)

  • 이옥재
    • 조명전기설비학회논문지
    • /
    • 제27권12호
    • /
    • pp.1-9
    • /
    • 2013
  • A standalone LED lighting system in using solar energy has been used usually less than 70W of lighting power because of a troublesome installation and maintenance. In this system, as more and more LED lighting power increases, the capacity of photovoltaic panel does proportionally, and to improve the charging efficiency of solar energy, MPPT(Maximum Power Point Tracking) techniques is used frequently, but the solar tracker is not. In this paper, a solar tracker which traces the light of the sun in varying hour to hour is studied to apply to the standalone LED lighting system. This solar tracker consists of twin axis for tracing the azimuth and altitude respectively, and it has a robust structure with safe mode to stand a strong wind. As a result of analysis, generating efficiency of the traced type has improved on the fixed one 28.84% on average.

Relationship of ground level enhancements with solar erupted factors

  • ;조경석
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.34.2-34.2
    • /
    • 2010
  • Cosmic rays registered by Neutron Monitors on the surface of the Earth are believed to be coming from outer space, and sometimes also from the exotic objects of the Sun. Ground level enhancement (GLE) is the sudden, sharp and short-lived increase in cosmic rays originated from the Sun. Since GLE is the signature in solar cosmic ray intensity, different solar factors erupted from the Sun can be responsible for causing it. In this context, an attempt has been made to determine quantitative relationships of GLEs > 5% with simultaneous solar, interplanetary and geophysical factors from 1997 through 2006 thereby searching the perpetrators which seem to be causing them. The study has revealed that solar flares are stronger ($0.71{\times}10-4$ w/m2) during GLE peaks than the solar flares ($1.10{\times}10-5$ w/m2) during GLE non-peaks and backgrounds. On the average, the solar wind plasma velocity and interplanetary magnetic field are found stronger during the GLE peaks than the GLE non-peaks and backgrounds indicating that the solar flares, in conjunction with interplanetary shocks, sometimes may cause GLE peaks. Direct proportionality of GLE peaks to simultaneous solar energetic particle (SEP) fluxes imply that the GLE peaks may often be caused by SEP fluxes. Although the high intensity of SEP fluxes are also seen extended few minutes even after GLE peaks, the mean (373.62 MeV) of the GLE associated SEP fluxes is much stronger than the mean (10.35 MeV) of the non-GLE associated SEP fluxes. Evidences are also supported by corresponding SEP fluences that the the mean fluence (${\sim}5.32{\times}107/cm2$) across GLE event was more intense than the mean fluence (${\sim}2.53{\times}106/cm2$) of SEP fluxes across non-GLE event.

  • PDF

Type II 전파폭발이 관측된 행성간 충격파의 1AU 내에서의 전파 과정 (TRANSIT OF THE INTERPLANETARY SHOCKS ASSOCIATED WITH TYPE II RADIO BURSTS WITHIN 1AU)

  • 오수연;이유;김용하
    • Journal of Astronomy and Space Sciences
    • /
    • 제24권3호
    • /
    • pp.219-226
    • /
    • 2007
  • ACE 위성이 1997년부터 2000년까지 관측한 행성간 충격파들 중에서 WIND 위성에서 관측된 Type II 태양 전파 폭발에 의한 것으로 연관되어지는 행성간 충격파 31개를 선별하였다. 이들 행성간 충격파 발생과 관련된 Type II 전파 폭발이 관측된 후에 행성 간 충격파가 인공위성들에 의해 관측될 때까지의 시간을 측정하여 행성간 충격파가 태양에서 지구까지 전달되는 전달속도를 구하였다. 이 속도와 ACE위성에서 실제 관측된 행성간 충격파의 진행속도를 비교하여 행성간 충격파의 태양 지구간 전파과정은 평균 가속도가 $-1.02m/sec^2$로 감속되는 과정임을 규명하였다. 더 나아가, 이로부터 행성간 충격파의 특성에 따른 행성간 충격파 전달 과정의 감속을 결정하는 가속도 값이 행성간 충격파의 진행속도나 마하수 등과 상관관계가 없음을 밝혀내었다.

Automatic real-time system of the global 3-D MHD model: Description and initial tests

  • Park, Geun-Seok;Choi, Seong-Hwan;Cho, Il-Hyun;Baek, Ji-Hye;Park, Kyung-Sun;Cho, Kyung-Suk;Choe, Gwang-Son
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.26.2-26.2
    • /
    • 2009
  • The Solar and Space Weather Research Group (SOS) in Korea Astronomy and Space Science Institute (KASI) is constructing the Space Weather Prediction Center since 2007. As a part of the project, we are developing automatic real-time system of the global 3-D magnetohydrodynamics (MHD) simulation. The MHD simulation model of earth's magnetosphere is designed as modified leap-frog scheme by T. Ogino, and it was parallelized by using message passing interface (MPI). Our work focuses on the automatic processing about simulation of 3-D MHD model and visualization of the simulation results. We used PC cluster to compute, and virtual reality modeling language (VRML) file format to visualize the MHD simulation. The system can show the variation of earth's magnetosphere by the solar wind in quasi real time. For data assimilation we used four parameters from ACE data; density, pressure, velocity of solar wind, and z component of interplanetary magnetic field (IMF). In this paper, we performed some initial tests and made a animation. The automatic real-time system will be valuable tool to understand the configuration of the solar-terrestrial environment for space weather research.

  • PDF

풍력용 동기발전기의 전기자 반작용을 이용한 전기 제동방식에 관한 연구 (A study on electronic braking system using wind power synchronous generator's armature reaction)

  • 박귀열;문채주;정의헌;장영학;김의선
    • 한국태양에너지학회 논문집
    • /
    • 제30권4호
    • /
    • pp.1-8
    • /
    • 2010
  • The mechanical parts of small windp ower generator less than 10kW are manufactured in the form of removing most of the accelerators. The braking system to protect blade from damages caused by high wind speed is manufactured in a manner having apparatus system(furling), manual brake or no brake. This study is on braking system in small size wind power generator, and carried out survey as following steps by applying electric braking system which uses armature reaction. We explained the principle of electric braking system and the principle of existing braking system. Also, this paper interpreted short circuit current through open circuit and short circuit, as well as checking brake system's action using armature reaction with real construction of control device.

대기온도 및 풍속 변화에 따른 함정의 적외선 신호 특성 분석 (Infrared Signature Analysis of a Ship for Different Atmosphere Temperature and Wind Velocity)

  • 최준혁;이지선;김정호;이성호;김태국
    • 한국군사과학기술학회지
    • /
    • 제11권5호
    • /
    • pp.84-91
    • /
    • 2008
  • The spectral radiance received by a remote sensor at a given temperature and wavelength region is consisted of the self-emitted component directly from the object surface, the reflected component of the solar irradiation at the object surface, and the scattered component by the atmosphere without ever reaching the object surface. The IR image of a ship is mainly affected by location, meteorological condition(atmosphere temperature, wind direction and velocity, humidity etc.), atmospheric transmittance, solar position and ship surface temperature etc. Computer simulations for prediction of the IR signatures of ships are very useful to examine the effects of various meteorological conditions. In this paper, we have acquired the IR signature for different meteorological conditions by using two different computer programs. The numerical results show that the IR image contrast as compared to the background sea considering the atmosphere temperature and wind velocity.

태양정밀추적 알고리즘의 LabVIEW 적용 연구 (The Study on the Application of Accurate Solar Tracking Algorithm by using LabVIEW)

  • 오승진;김영민;이윤준;조일식;천원기
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.121-125
    • /
    • 2009
  • There have been many developed systems for harnessing the solar energy such as solar water heaters, solar thermal power systems, PV systems, daylighting and solar hydrogen systems. all of them are capable of reducing $CO_2$ emission. However, the efficiency of those systems which work without a solar tracker is lower. This paper is a step by step procedure for fabrication and a performance test of a solar tracking system. The system developed in this study consists of motion controllers, motor drives, step-motors, feedback devices and application. CdS sensors are introduced into the solar tracking system for playing a primary role in poor conditions for tracking due to a gear backlash and a strong wind. Mini-dish was used as a concentrator for collecting sun light. The solar position data, in terms of azimuth and elevation, sunrise and sunset times was compared with those of KASI(Korea Astronomy & Space Science Institute). The results presented in this article provide the high accuracy of the present system in solar tracking and indicate a potential for energy savings.

  • PDF

Opening New Horizons with the L4 Mission: Vision and Plan

  • Kyung-Suk Cho;Junga Hwang;Jeong-Yeol Han;Seong-Hwan Choi;Sung-Hong Park;Eun-Kyung Lim;Rok-Soon Kim;Jungjoon Seough;Jong-Dae Sohn;Donguk Song;Jae-Young Kwak;Yukinaga Miyashita;Ji-Hye Baek;Jaejin Lee;Jinsung Lee;Kwangsun Ryu;Jongho Seon;Ho Jin;Sung-Jun Ye;Yong-Jae, Moon;Dae-Young Lee;Peter H. Yoon;Thiem Hoang;Veerle Sterken;Bhuwan Joshi;Chang-Han Lee;Jongjin Jang;Jae-Hwee Doh;Hwayeong Kim;Hyeon-Jeong Park;Natchimuthuk Gopalswamy;Talaat Elsayed;John Lee
    • 천문학회지
    • /
    • 제56권2호
    • /
    • pp.263-275
    • /
    • 2023
  • The Sun-Earth Lagrange point L4 is considered as one of the unique places where the solar activity and heliospheric environment can be observed in a continuous and comprehensive manner. The L4 mission affords a clear and wide-angle view of the Sun-Earth line for the study of the Sun-Earth and Sun-Moon connections from he perspective of remote-sensing observations. In-situ measurements of the solar radiation, solar wind, and heliospheric magnetic field are critical components necessary for monitoring and forecasting the radiation environment as it relates to the issue of safe human exploration of the Moon and Mars. A dust detector on the ram side of the spacecraft allows for an unprecedented detection of local dust and its interactions with the heliosphere. The purpose of the present paper is to emphasize the importance of L4 observations as well as to outline a strategy for the planned L4 mission with remote and in-situ payloads onboard a Korean spacecraft. It is expected that the Korean L4 mission can significantly contribute to improving the space weather forecasting capability by enhancing the understanding of heliosphere through comprehensive and coordinated observations of the heliosphere at multi-points with other existing or planned L1 and L5 missions.

CME propagation and proton acceleration in solar corona

  • Kim, Roksoon;Kwon, Ryunyoung;Lee, Jaeok;Lario, David
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.53.3-54
    • /
    • 2018
  • Solar Proton Events (SPEs) are the energetic phenomena related particle acceleration occurred in solar corona. Conventionally, they have been classified into two groups as the impulsive and gradual cases caused by reconnection in the flaring site and by shock generated by CME, respectively. In the previous studies, we classified these into four groups by analyzing the proton acceleration patterns in multi-energy channel observation. This showed that acceleration due to the magnetic reconnection may occur in the corona region relatively higher than the flaring site. In this study, we analyzes 54 SPEs observed in the energy band over 25 MeV from 2009 to 2013, where STEREO observations as well as SOHO can be utilized. From the multi-positional observation, we determine the exact time at which the Sun-Earth magnetic field line meets the CME shock structure by considering 3-dimensional structure of CME. Also, we determine the path length by considering the solar wind velocity for each event, so that the SPE onset time near the sun is obtained more accurately. Based on this study, we can get a more understanding of the correlation between CME progression and proton acceleration in the solar coronal region.

  • PDF

Improvement of Corona Temperature and Velocity Determination Method Using a Coronagraph Filter System

  • Cho, Kyuhyoun;Chae, Jongchul;Lim, Eun-Kyung
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.85.3-86
    • /
    • 2017
  • We have developed a methodology to determine the coronal electron temperature and solar wind speed using a four filter coronagraph system. The method developed so far have been applied to total eclipse observation and have yielded plausible results. The current methodology starts from the assumption that 1) coronal free electrons are isothermal and 2) coronal free electrons have spherically symmetric distrubution. However, the actual solar corona differs significantly from the two assumptions above. The coronal electron density is not spherically symmetric due to streamers, plumes, and coronal loops, and the electron temperature is also expected to increase rapidly with distance from the sun. We will discuss how to determine the temperature and wind speed of the corona in the case of corona with thermal structures and non-spherical symmetric electron density.

  • PDF