• 제목/요약/키워드: Sun: solar wind

검색결과 105건 처리시간 0.025초

NUMERICAL CALCULATION OF TWO FLUID SOLAR WIND MODEL

  • KIM S.-J.;KIM K.-S.;MOON Y.-J.;CRO K.-S.;PARK Y. D.
    • 천문학회지
    • /
    • 제37권1호
    • /
    • pp.55-59
    • /
    • 2004
  • We have developed a two fluid solar wind model from the Sun to 1 AU. Its basic equations are mass, momentum and energy conservations. In these equations, we include a wave mechanism of heating the corona and accelerating the wind. The two fluid model takes into account the power spectrum of Alfvenic wave fluctuation. Model computations have been made to fit observational constraints such as electron($T_e$) and proton($T_p$) temperatures and solar wind speed(V) at 1 AU. As a result, we obtained physical quantities of solar wind as follows: $T_e$ is $7.4{\times}10^5$ K and density(n) is $1.7 {\times}10^7\;cm^{-3}$ in the corona. At 1 AU $T_e$ is $2.1 {\times} 10^5$ K and n is $0.3 cm^{-3}$, and V is $511 km\;s^{-1}$. Our model well explains the heating of protons in the corona and the acceleration of the solar wind.

Do Inner Planets Modulate the Solar Wind Velocity at 1 AU from the Sun?

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권1호
    • /
    • pp.1-6
    • /
    • 2014
  • Quite recently, it has been suggested that the interaction of the solar wind with Mercury results in the variation in the solar wind velocity in the Earth's neighborhood during inferior conjunctions with Mercury. This suggestion has important implications both on the plasma physics of the interplanetary space and on the space weather forecast. In this study we have attempted to answer a question of whether the claim is properly tested. We confirm that there are indeed ups and downs in the profile of the solar wind velocity measured at the distance of 1 AU from the Sun. However, the characteristic attribute of the variation in the solar wind velocity during the inferior conjunctions with Mercury is found to be insensitive to the phase of the solar cycles, contrary to an earlier suggestion. We have found that the cases of the superior conjunctions with Mercury and of even randomly chosen data sets rather result in similar features. Cases of Venus are also examined, where it is found that the ups and downs with a period of ~ 10 to 15 days can be also seen. We conclude, therefore, that those variations in the solar wind velocity turn out to be a part of random fluctuations and have nothing to do with the relative position of inner planets. At least, one should conclude that the solar wind velocity is not a proper observable modulated by inner planets at the distance of 1 AU from the Sun in the Earth's neighborhood during inferior conjunctions.

Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

  • Park, Keunchan;Lee, Jeongwoo;Yi, Yu;Lee, Jaejin;Sohn, Jongdae
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권2호
    • /
    • pp.105-110
    • /
    • 2017
  • Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP) shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF) data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE) and the Wind satellite. We also calculate two pressures (magnetic, dynamic) and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena's sources caused by IP shock are interplanetary coronal mass ejection (ICME). We also found that solar wind density depletions are scarcely related with IP shock's parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.

타공 패널의 다공률에 따른 에너지 하베스팅에 관한 연구 (A Study on the Energy Harvesting according to the porosity of Perforated Panel)

  • 박하준;이민협;유무영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.113-114
    • /
    • 2023
  • As the available resources are gradually depleted, interest in renewable energy is increasing. Various energy harvesting technologies are emerging, and energy harvesting using solar, solar, and wind power is used in the highest range. Depending on the abnormal climate, solar heat and solar power differ in energy harvest, but the wind is fixed compared to the sun. Therefore, it was intended to maximize the effect of energy harvesting by using the venturi effect, which has a change in wind speed according to the turbine used for wind power generation and wind pressure. Therefore, in this paper, we want to see the difference in the amount of power generated by the turbine after increasing the wind speed using the venturi effect.

  • PDF

Development of three-dimensional global MHD model for an interplanetary coronal mass ejection

  • An, Jun-Mo;Magara, Tetsuya;Inoue, Satoshi;Hayashi, Keiji;Tanaka, Takashi
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.65.2-65.2
    • /
    • 2015
  • We developed a three-dimensional magnetohydrodynamic (MHD) code to reproduce the structure of a solar wind, the properties of a coronal mass ejection (CME) and the interaction between them. This MHD code is based on the finite volume method incorporating total variation diminishing (TVD) scheme with an unstructured grid system. In particular, this grid system can avoid the singularity at the north and south poles and relax tight CFL conditions around the poles, both of which would arise in a spherical coordinate system (Tanaka 1994). In this model, we first apply an MHD tomographic method (Hayashi et al. 2003) to interplanetary scintillation (IPS) observational data and derive a solar wind from the physical values obtained at 50 solar radii away from the Sun. By comparing the properties of this solar wind to observational data obtained near the Earth orbit, we confirmed that our model captures the velocity, temperature and density profiles of a solar wind near the Earth orbit. We then insert a spheromak-type CME (Kataoka et al. 2009) into the solar wind to reproduce an actual CME event. This has been done by introducing a time-dependent boundary condition to the inner boundary of our simulation domain. On the basis of a comparison between a simulated CME and observations near the Earth, we discuss the physics involved in an ICME interacting with a solar wind.

  • PDF

추적식 태양광 발전기 설계를 위한 풍하중 해석 (Wind load analysis for designing a tracking solar generator)

  • 김영은;정규원;이재진
    • 한국산학기술학회논문지
    • /
    • 제18권2호
    • /
    • pp.672-680
    • /
    • 2017
  • 태양광 발전 시스템은 태양광 패널이 부착되어 있는 구조물, 이를 지지하는 부분과 발전된 전력을 계통 또는 부하측에 공급하는 장치로 구성된다. 태양광 패널의 발전효율은 태양빛의 입사량에 영향을 받기 때문에 패널이 태양빛을 가장 많이 받을 수 있는 방향으로 패널 구조물을 설치한다. 그러나 태양은 계속 이동하기 때문에 고정식 보다는 태양을 향하여 패널이 회전하는 방식이 더욱 효율이 좋다. 태양광 패널 구조물은 야외에 설치되므로 풍하중, 적설하중 지진하중 등이 작용한다. 본 논문에서는 태양광 패널 구조물에 가장 영향이 큰 풍하중을 유한요소법을 사용하여 구하고 이를 적용하여 태양 추적식 발전 장치의 구조물을 설계하였다. 특히 패널간의 간격에 따른 풍하중을 구하고, 패널 구조물이 지면과 이루는 각도에 따른 풍하중의 변화도 구하였다. 패널간의 간격은 간격이 없을 경우, 간격이 40 mm, 80 mm일 경우 등 3가지 경우에 대하여 해석을 하였으며, 지면과의 각도는 30도, 45도, 60도 등에 대하여 해석을 하였다. 해석결과 풍하중은 패널간의 간격이 없을 경우가 가장 적게 나타났고, 지면과의 경사각이 클수록 커지는 것을 알 수 있었다.

Determination of 2D solar wind speed maps from LASCO C3 observations using Fourier motion filter

  • Cho, Il-Hyun;Moon, Yong-Jae;Lee, Jin-Yi;Nakariakov, Valery;Cho, Kyung-Suk
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.68-68
    • /
    • 2017
  • Measurements of solar wind speed near the Sun (< 0.1 AU) are important for understanding acceleration mechanism of solar wind as well as space weather predictions, but hard to directly measure them. For the first time, we provide 2D solar wind speed maps in the LASCO field of view using three consecutive days data. By applying the Fourier convolution and inverse Fourier transform, we decompose the 3D intensity data (r, PA, t) into the 4D one (r, PA, t, v). Then, we take the weighted mean along speed to determine the solar wind speeds that gives V(r, PA, t) in every 30 min. The estimated radial speeds are consistent with those given by an artificial flow and plasma blobs. We find that the estimated speeds are moderately correlated with those from slow CMEs and those from IPS observations. A comparison of yearly solar wind speed maps in 2000 and 2009 shows that they have very remarkable differences: azimuthally uniform distribution in 2000 and bi-modal distribution (high speed near the poles and low speed near the equator) in 2009.

  • PDF

Magnetospheric and ionospheric responses to the passage of solar wind discontinuity on 24 November 2008

  • Kim, Khan-Hyuk;Park, Jong-Sun;Lee, Dong-Hun;Park, Young-Deuk;Angelopoulos, V.;Nishitani, N.;Hori, T.;Shiokawa, K.;Yumoto, K.;Baishev, D.
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.91-91
    • /
    • 2011
  • The passage of the interplanetary discontinuity (i.e., sudden increases in the solar wind speed, density, and IMF strength) was detected by ACE near GSE (x, y, z) ~ (222, -36, 3) Re upstream of Earth around 22:48 UT on November 24, 2008. About 55 min later, this solar wind discontinuity was observed by Geotail near GSE (x, y, z) ~ (23, 18, -7) Re in front of Earth's bow shock. From the propagation time of the solar wind discontinuity between ACE and Geotail, it is expected that the discontinuity front is aligned with the Parker spiral and strikes the postnoon dayside magnetopause first. Using coordinated multi-point measurements (THEMIS and GOES) at or in geosynchronous orbit, we observed a tailward propagating sudden impulse (SI), excited by the interplanetary discontinuity, around 23:50 UT with its front retaining alignment similar to that of solar wind discontinuity. The SI event appears a negative-then-positive variation in the H component at high latitude Chokurdakh (CHD: MLAT ~ 64.7 deg) in the prenoon sector, which is opposite sense of normal SI event. During the positive deflection at CHD, the SuperDARN Hokkaido radar detected the downward motion of the ionosphere, implying westward electric field enhancement, at subauroral latitudes near CHD meridian. In our study we will discuss magnetospheric and ionospheric responses to the passage of the solar wind discontinuity using multi-point observations in space and on the ground.

  • PDF

A Simulation on the Performance of Durability in a Polymer Solar Glazing Design

  • Cahyono, Sukmaji Indro;Eom, Han-Saem;Ryu, Nam-Jin;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.331-336
    • /
    • 2012
  • Nowaday the conventional solar collector material prices are rising up because of pricy metal material over the world. The solar collector is too expensive to recycle to save the earth. Advanced polymer research is founded a high thermal resistant polymer and also it has high sun energy transmission. It also has cheaper material and easy manufacturing process, compare with conventional solar collector material. This paper is focussing on glazing simulation of polymer solar collector against wind pressure. The modeling geometry of polymer solar glazing are purposed by single layer, double layer hollow, zig-zag and tower. A simulation by using the Finite Volume was conducted to get Factor of Safety (FoS). The purpose of this paper is to find the best polymer glazing design, which can be as reference for the solar collector company to build Polymer. Hope fully new model of polymer solar collector has cheap, light, high sun energy transmitter, easy to be made and strong against wind force characteristics.

  • PDF

Global MHD Simulation of the Earth's Magnetosphere Event on October, 1999

  • PARK KYUNG SUN;OGINO TATSUKI
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.317-319
    • /
    • 2001
  • The response of the earth's magnetosphere to the variation of the solar wind parameters and Interplanetary magnetic field (IMF) has been stud}ed by using a high-resolution, three-dimension magnetohydrodynamic (MHD) simulation when the WIND data of velocity Vx, plasma density, dynamic pressure, By and Bz every 1 minute were used as input. Large electrojet and magnetic storm which occurred on October 21 and 22 are reproduced in the simulation (fig. 1). We have studied the energy transfer and tail reconnect ion in association with geomagnetic storms.

  • PDF