• Title/Summary/Keyword: Summer precipitation

Search Result 523, Processing Time 0.047 seconds

Simulation of anomalous Indian Summer Monsoon of 2002 with a Regional Climate Model

  • Singh, G.P.;Oh, Jai-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The Indian summer monsoon behaved in an abnormal way in 2002 and as a result there was a large deficiency in precipitation (especially in July) over a large part of the Indian subcontinent. For the study of deficient monsoon of 2002, a recent version of the NCAR regional climate model (RegCM3) has been used to examine the important features of summer monsoon circulations and precipitation during 2002. The main characteristics of wind fields at lower level (850 hPa) and upper level (200 hPa) and precipitation simulated with the RegCM3 over the Indian subcontinent are studied using different cumulus parameterization schemes namely, mass flux schemes, a simplified Kuo-type scheme and Emanuel (EMU) scheme. The monsoon circulation features simulated by RegCM3 are compared with the NCEP/NCAR reanalysis and simulated precipitation is validated against observation from the Global Precipitation Climatology Centre (GPCC). Validation of the wind fields at lower and upper levels shows that the use of Arakawa and Schubert (AS) closure in Grell convection scheme, a Kuo type and Emanuel schemes produces results close to the NCEP/NCAR reanalysis. Similarly, precipitation simulated with RegCM3 over different homogeneous zones of India with the AS closure in Grell is more close to the corresponding observed monthly and seasonal values. RegcM3 simulation also captured the spatial distribution of deficient rainfall in 2002.

  • PDF

Temporal Variation of the Western Pacific Subtropical High Westward Ridge and its Implicationson South Korean Precipitation in Late Summer

  • Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.24-24
    • /
    • 2019
  • This study investigates variations in the Western Pacific Subtropical High (WPSH) and its impact on South Korean precipitation in late summer during the period between 1958 and 2017. Composite analysis reveals that precipitation occurrence is directly linked to the displacement of the WPSH western ridge, a single, large-scale feature of the atmosphere in the Pacific Ocean. When WPSH ridging is located northwest (NW) of its climatological mean position, excessive precipitation is expected in late summer due to enhanced moisture transport. On the other hand, a precipitation deficit is frequently observed when the western ridge is located in the southeast (SE). Different phases of the WPSH are associated with lagged patterns of Pacific and Atlantic atmospheric and oceanic variability, introducing the potential to predict variability in the WPSH western ridge and its climate over northern East Asia by one month. Based on the identified SST patterns, a simple statistical model is developed and improvement in the ability to predict is confirmed through a cross-validation framework. Finally, the potential for further improvements in WPSH-based predictions is addressed.

  • PDF

The Variations of Interstational and Interseasonal Rainfall in South Korea (남한의 지역간, 계절간 강수량의 특성)

  • 최희구
    • Water for future
    • /
    • v.11 no.2
    • /
    • pp.62-69
    • /
    • 1978
  • Interstational and interseasonal analyses of the correlation and variability in the seasonal and annual precipitation for 10 basic synoptic stations in South Korea, on the basis of rainfall record of over 40 years, are carried out. It is found that the climatic regions of precipitation could be classified by means of the interstational analysis for the correlations. Corrleation coefficients in interstational relationship of precipitation are lowest in autumn which characterizeds a strong locality while the highest value shows a relatively weak locality in winter. Interseasonal relationship between summer and winter precipitation shows mostly 10 percent significant level with all positive values. The magnitude of the variation coefficients are appeared to be in the order of winter, autumn, spring and summer. It is shown that the highest which is winter ranges between 0.33 0.58, and for the lowest summer, 0.26-0.44, respectively in the areal distribution of the coefficient. The secular changes of the variation coefficient in the recent trend show increases in spring at two station; Seoul and Incheon, in summer at Busan and in autumn at two stations; Busan and Incheon while in winter show devreases at the whole stations. An annual variation seems to show generally a constant trend as whole for all the stations.

  • PDF

Classification of Intraseasonal Oscillation in Precipitation using Self-Organizing Map for the East Asian Summer Monsoon (동아시아 여름몬순 지수의 자기조직화지도(SOM)에 의한 강수량의 계절 내 진동 분류)

  • Chu, Jung-Eun;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.221-228
    • /
    • 2011
  • The nonlinear characteristics of summer monsoon intraseasonal oscillation (ISO) in precipitation, which is manifested as fluctuations in convection and circulation, is one of the major difficulty on the prediction of East Asian summer monsoon (EASM). The present study aims to identify the spatial distribution and time evolution of nonlinear phases of monsoon ISO. In order to classify the different phases of monsoon ISO, Self-Organizing Map(SOM) known as a nonlinear pattern recognition technique is used. SOM has a great attractiveness detecting self-similarity among data elements by grouping and clustering such self-similar components. The four important patterns are demonstrated as Meiyu-Baiu, Changma, post-Changma, and dry-spell modes. It is found that SOM well captured the formation of East Asian monsoon trough during early summer and its northward migration together with enhanced convection over subtropical western Pacific and regionally intensive precipitation including Meiyu, Changma and Baiu. The classification of fundamental large scale spatial pattern and evolutionary history of nonlinear phases of monsoon ISO provides the source of predictability for extended-range forecast of summer precipitation.

Strengthened Madden-Julian Oscillation Variability improved the 2020 Summer Rainfall Prediction in East Asia

  • Jieun Wie;Semin Yun;Jinhee Kang;Sang-Min Lee;Johan Lee;Baek-Jo Kim;Byung-Kwon Moon
    • Journal of the Korean earth science society
    • /
    • v.44 no.3
    • /
    • pp.185-195
    • /
    • 2023
  • The prolonged and heavy East Asian summer precipitation in 2020 may have been caused by an enhanced Madden-Julian Oscillation (MJO), which requires evaluation using forecast models. We examined the performance of GloSea6, an operational forecast model, in predicting the East Asian summer precipitation during July 2020, and investigated the role of MJO in the extreme rainfall event. Two experiments, CON and EXP, were conducted using different convection schemes, 6A and 5A, respectively to simulate various aspects of MJO. The EXP runs yielded stronger forecasts of East Asian precipitation for July 2020 than the CON runs, probably due to the prominent MJO realization in the former experiment. The stronger MJO created stronger moist southerly winds associated with the western North Pacific subtropical high, which led to increased precipitation. The strengthening of the MJO was found to improve the prediction accuracy of East Asian summer precipitation. However, it is important to note that this study does not discuss the impact of changes in the convection scheme on the modulation of MJO. Further research is needed to understand other factors that could strengthen the MJO and improve the forecast.

Future Climate Projection over East Asia Using ECHO-G/S (ECHO-G/S를 활용한 미래 동아시아 기후 전망)

  • Cha, Yu-Mi;Lee, Hyo-Shin;Moon, JaYeon;Kwon, Won-Tae;Boo, Kyong-On
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.55-68
    • /
    • 2007
  • Future climate changes over East Asia are projected by anthropogenic forcing of greenhouse gases and aerosols using ECHO-G/S (ECHAM4/HOPE-G). Climate simulation in the 21st century is conducted with three standard SRES scenarios (A1B, B1, and A2) and the model performance is assessed by the 20th Century (20C3M) experiment. From the present climate simulation (20C3M), the model reproduced reliable climate state in the most fields, however, cold bias in temperature and dry bias of summer in precipitation occurred. The intercomparison among models using Taylor diagram indicates that ECHO-G/S exhibits smaller mean bias and higher pattern correlation than other nine AOGCMs. Based on SRES scenarios, East Asia will experience warmer and wetter climate in the coming 21st century. Changes of geographical patterns from the present to the future are considerably similar through all the scenarios except for the magnitude difference. The temperature in winter and precipitation in summer show remarkable increase. In spite of the large uncertainty in simulating precipitation by regional scale, we found that the summer (winter) precipitation at eastern coast (north of $40^{\circ}N$) of East Asia has significantly increased. In the 21st century, the warming over the continents of East Asia showed much more increase than that over the ocean. Hence, more enhanced (weakened) land-sea thermal contrast over East Asia in summer (winter) will cause strong (weak) monsoon. In summer, the low pressure located in East Asia becomes deeper and the moisture from the south or southeast is transported more into the land. These result in increasing precipitation amount over East Asia, especially at the coastal region. In winter, the increase (decrease) of precipitation is accompanied by strengthening (weakening) of baroclinicity over the land (sea) of East Asia.

The Characteristics of the Anomaly Level and Variability of the Monthly Precipitation in Kyeongnam, Korea (경남지방의 월강수량의 변동율과 Anomaly Level의 출현특성)

  • 박종길;이부용
    • Journal of Environmental Science International
    • /
    • v.2 no.3
    • /
    • pp.179-191
    • /
    • 1993
  • This paper aims to know the characteristics of occurrence of the anomaly level and variability of the monthly precipitation in Kyeongnam, Korea. For this study, it was investigated 주e distribution of the annual and cont비y mean precipitation, the precipitation variability and its annual change, and the characteristics of occurrence of the anomaly level in Kyeongnam area the results were summarized as follows : 1) she mean of annual total precipitation averaged over Kyeongnam area is 1433.3mm. I'he spatial distribution of the annual total precipitation shows that in Kyeongnam area, the high rainfall area locates in the southwest area and south coast and the low rainfall area in an inland area. 2) Monthly mean precipitation in llyeongnam area was the highest in July(266.4mm) 각lowed by August(238.0mm), June(210.2mm) in descending order. In summer season, rainfall was concentrated and accounted for 49.9 percent of the annual total precipitation. Because convergence of the warm and humid southwest current which was influenced by Changma and typhoon took place well in this area. 3) The patterns of annual change of precipitaion variability can be divided into two types; One is a coast type and the other an inland type. The variability of precipitation generally appears low in spring and summer season and high in autumn and winter season. This is in accord with the large and small of precipitation. 4) The high frequency of anomaly level was N( Normal)-level and the next was LN( Low Informal) -level and 25(Extremely Subnormal)-level was not appeared in all stations. The occurrence frequency of N level was high in high rainfall area and distinguish성 in spring and summer season but the low rainfall area was not. hey Words : anomaly level, variability, precipitation, coast type, inland type.

  • PDF

Precipitation Change in Korea due to Atmospheric $ Increase

  • Oh, Jai-Ho;Hong, Sung-Gil
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.87-106
    • /
    • 1996
  • A precipitation change scenario in Korea due to atmospheric $ doubling has been provided with a mixed method (Rebinson and Finkelstein, 1991) based on the simulated precipitation data by three GCM(CCC, UI, and GFDL GCM) experiments. Through the analysis the precipitation change by atmospheric $ doubing can be summarized as follows : Korea may have more precipitation as much as 25mm/yr during spring season and more less 50 mm/yr during summer and autumn, respectively. In the contrary Korea may have less rainfall as much as 13 mm/yr during winter. In terms of percentage with respect to current climatological value of precipitation Korea may have more rain as much as 10%, 13% and 24%, respectively, for spring, summer and autumn than current climate. However, Korea may have less precipitation during winter than current climatological average.

  • PDF

The Improvement of Summer Season Precipitation Predictability by Optimizing the Parameters in Cumulus Parameterization Using Micro-Genetic Algorithm (마이크로 유전알고리즘을 이용한 적운물리과정 모수 최적화에 따른 여름철 강수예측성능 개선)

  • Jang, Ji-Yeon;Lee, Yong Hee;Choi, Hyun-Joo
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.335-346
    • /
    • 2020
  • Three free parameters included in a cumulus parameterization are optimized by using micro-genetic algorithm for three precipitation cases occurred in the Korea Peninsula during the summer season in order to reduce biases in a regional model associated with the uncertainties of the parameters and thus to improve the predictability of precipitation. The first parameter is the one that determines the threshold in convective trigger condition. The second parameter is the one that determines boundary layer forcing in convective closure. Finally, the third parameter is the one used in calculating conversion parameter determining the fraction of condensate converted to convective precipitation. Optimized parameters reduce the occurrence of convections by suppressing the trigger of convection. The reduced convection occurrence decreases light precipitation but increases heavy precipitation. The sensitivity experiments are conducted to examine the effects of the optimized parameters on the predictability of precipitation. The predictability of precipitation is the best when the three optimized parameters are applied to the parameterization at the same time. The first parameter most dominantly affects the predictability of precipitation. Short-range forecasts for July 2018 are also conducted to statistically assess the precipitation predictability. It is found that the predictability of precipitation is consistently improved with the optimized parameters.

Stable Isotopic Variation of Precipitation in Pohang, Korea (포항 강수의 안정 동위원소 조성 변화)

  • Lee, Kwang-Sik;Chung, Jae-Il
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.321-325
    • /
    • 1997
  • In this paper an attempt is made to explain some of the factors controlling oxygen and hydrogen isotopic variations of precipitation in Pohang by analysing the IAEA data (1961~1976) through statistical correlations and trend observations. During this period, the values of ${\delta}^{18}O$ and D varied widely from -17.80 to +0.07‰, and from -131.9 to +7.7‰, respectively, and fall along a local meteoric water line defined by ${\delta}D=(8.05{\pm}0.32)$ ${\delta}^{18}O+(12.72{\pm}2.44)$ (n=108, ${\gamma}^2=0.86$). The ${\delta}^{18}O$ and ${\delta}D$ values of the precipitation appear to be little dependent on temperature. Although the amount effect is clearly shown in summer precipitation of 1963 and 1965, the isotopic composition of summer precipitation seems not to be greatly dependent on the amount of precipitation.

  • PDF