• Title/Summary/Keyword: Summer peak time

Search Result 120, Processing Time 0.023 seconds

The Study on Cooling Load Forecast using Neural Networks (신경회로망을 이용한 냉방부하예측에 관한 연구)

  • 신관우;이윤섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.626-633
    • /
    • 2002
  • The electric power load during the peak time in summer is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. And also the method of forecasting the cooling load using neural network is suggested. For the simulation, the cooling load is calculated using actual temperature and humidity, The forecast of the temperature, humidity and cooling load are simulated. As a result of the simulation, the forecasted data is approached to the actual data.

The Study on Cooling Load Forecast of an Unit Building using Neural Networks

  • Shin, Kwan-Woo;Lee, Youn-Seop
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.170-177
    • /
    • 2003
  • The electric power load during the summer peak time is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. The method of forecasting the cooling load using neural network is also suggested. The daily cooling load is mainly dependent on actual temperature and humidity of the day. The simulation is started with forecasting the temperature and humidity of the following day from the past data. The cooling load is then simulated by using the forecasted temperature and humidity data obtained from the simulation. It was observed that the forecasted data were closely approached to the actual data.

Time series analysis for incidence of scarlet fever in children in Jeju Province, Korea, 2002~2016 (2002~2016년도 제주도 소아의 성홍열 발생의 시계열분석)

  • Shin, In-Hye;Bae, Jong-Myon
    • Journal of Medicine and Life Science
    • /
    • v.16 no.3
    • /
    • pp.90-95
    • /
    • 2019
  • The Korea Centers for Diseases Control and Prevention interpreted that recent outbreaks of scarlet fever in Korea since 2011 was resulted from the expansion of scarlet fever notification criteria. To suggest a relevant hypothesis regarding this emerging outbreak, a time series analysis(TSA) of scarlet fever incidence between 2002 and 2016 was conducted. The raw data was the nationwide insurance claims database administered by the Korean National Health Insurance Service. The inclusion criteria were children aged ≤14 years residing in Jeju Province, Korea who received any form of healthcare for scarlet fever from 2002 to 2016. The season was defined as winter (December, January, February; Q1), spring (March, April, May; Q2), summer (June, July, August; Q3), and autumn (September, October, November; Q4). There were seasonal variations with showing peak season on Q1 and Q3. And three phases as 2002 Q2~2005 Q2, 2005 Q2~2009 Q4, and 2010 Q1~2016 Q4 were found between 2002 and 2016. The results from TSA suggested that the recent outbreak of scarlet fever among children in Jeju Province might be a phenomenon from 'unknown birth-related environmental factors' changed after 2010.

A study on the heat transfer characteristics during outward melting process of ice in a vertical cylinder (수직원통형 빙축열조내 외향용융과정시 열전달특성에 관한 연구 -작동유체의 유동방향 및 축열조 형상비에 따른 열성능 비교-)

  • Kim, D.H.;Kim, D.C.;Kim, I.G.;Kim, Y.K.;Yim, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.171-179
    • /
    • 1997
  • During the day time in summer, peak of air conditing load, and electric power management system lies under overloaded condition. The reason is the enlarged peak load value of electric power caused by increased air-cooling load in summer. To prevent load concentration during day time and overloaded condition of power management system, some energy storage methods are suggested. One of these methods is ice storage system. Water has some good properties as P.C.M.(Phase Chang Material) : Its melting point is the range of required operation temperature. It has large specific latent heat and is chemically stable compared to other organic or inorganic substances. It is cheap and easy to treat. This study represents experimental results of heat transfer characteristics of P.C.M. under the outward melting process in a vertical cylinder. We experimented with twelve combinations of conditions, i.e., three different inlet temperatures($7^{\circ}C,\;4^{\circ}C\;and\;1^{\circ}C$), two working fluid directions(upward and downward), and two aspect ratios, H/R(4 and 2). At the inlet temperature of $7^{\circ}C$ and $4^{\circ}C$, there was temperature stagnation region where the temperature of P.C.M. remains constant at $4^{\circ}C$ regardless of aspect ratio and direction of working fluid. This temperature stagnation occurs as the water, at its maximum density, flows down to the lower region. The phase change interface formed bell-shaped curve as the melting process continued. With a new set of conditions(4H/R, inlet temperature $4^{\circ}C$ and $1^{\circ}C$, downward/upwerd inlet direction), the movement of phase change interface was faster when the working flued inlet direction was downward. With the same set of conditions, melting rate and total melting energy were larger when the working fluid inlet direction was downward. The results were reversed when the other sets of conditions were applied.

  • PDF

Effects of Thermal Properties and Water Retention Characteristics of Permeable Concrete Pavement on Surface Temperature (투.보수성 시멘트 콘크리트 포장의 열물성 및 수분보유특성이 표면온도에 미치는 영향)

  • Ryu Nam-Hyang;Yoo Byung-Rim
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.1 s.114
    • /
    • pp.21-36
    • /
    • 2006
  • This study was undertaken to analyze the effects of pavement thermal properties and water retention characteristics on the surface temperature of the gray permeable cement concrete pavement during the summer. Following is a summary of major results. 1) The hourly surface temperature of pavement could be well predicted with a heat transfer model program that incorporated the input data of major meteorological variables including solar radiation, atmospheric temperature, dew point, wind velocity, cloudiness and the evaporation rate of the pavements predicted by the time domain reflectometry (TDR) method. 2) When the albedo was changed to 0.5 from an arbitrary starting condition of 0.3, holding other variables constant, the peak surface temperature of the pavement dropped by 11.5%. When heat capacity was changed to $2.5\;kJm^{-3}K^{-1}\;from\;1.5\;kJm^{-3}K^{-1}$, surface temperature dropped by 8.0%. When daily evaporation was changed to 1 mm from 2 mm, temperature dropped by 5.7%. When heat conductivity was changed to $2.5\;Wm^{-1}K^{-1}\;from\;1.5\;Wm^{-1}K^{-1}$, the peak surface temperature of the pavement fell by 1.2%. The peak pavement surface temperature under the arbitrary basic condition was $24.46^{\circ}C$ (12 a.m.). 3) It accordingly became evident that the pavement surface temperature can be most effectively lowered by using materials with a high albedo, a high heat capacity or a high evaporation at the pavement surface. The glare situation, however, is intensified by raising of the albedo, moreover if reflected light is absorbed into surrounding physical masses, it is changed into heat. It accordingly became evident that raising the heat capacity and the evaporative capacity may be the moot acceptable measures to improve the thermal characteristics of the pavement. 4) The sensitivity of the surface temperature to major meteorological variables was as follows. When the daily average temperature changed to $0^{\circ}C\;from\;15^{\circ}C$, holding all other variables constant, the peak surface temperature of the pavement decreased by 56.1 %. When the global solar radiation changed to $200\;Wm^{-2}\;from\;600\;Wm^{-2}$, the temperature of the pavement decreased by 23.4%. When the wind velocity changed to $8\;ms^{-1}\;from\;4\;ms^{-1}$, the temperature decreased by 1.4%. When the cloudiness level changed to 1.0 from 0.5, the peak surface temperature decreased by 0.7%. The peak pavement surface temperature under the arbitrary basic conditions was $24.46^{\circ}C$ (12 a.m.)

Economic Welfare Study on Seasonal and Time Period Electricity Pricing (계시별 전력가격에 대한 경제적 후생 연구)

  • Yoo, Young-Hoon;Kim, SungSoo
    • Environmental and Resource Economics Review
    • /
    • v.14 no.2
    • /
    • pp.519-547
    • /
    • 2005
  • The aim of this study is to analysis how economic welfare lost happens within the present korea seasonal and time period electricity pricing system and find out reasonable electricity price system acceptable during the transitional period of korea electricity industry restructuring To analyze economic welfare lost in the electricity industry, in advance seasonal and time periodic 9 demand curves(summer, spring &fall, winter/peak-load time, middle-load time, low-load time) and one market supply curve are made and then using these demand and supply curve, seasonal and time periodic market equilibrium prices is calculated. Finally, comparing these market equilibrium prices with present regulated classified seasonal and time periodic prices, the whole economic welfare lost in the electricity industry is calculated. The result of this study shows that in 2002, the total economic welfare lost in electricity industry is 137,770 million Won and under present price system, the worst welfare lost is happening seasonally in spring & fall, time periodically in the middle-load time. Specifically analyzing the characteristics of welfare lost, especially on the industry customers and service customers which are applied in seasonal and time periodic pricing, for the industry customers, the welfare lost calculated in this class occupies 51% of the total welfare lost in the whole electricity industry and the worst welfare lost is happening seasonally in spring & fall, time periodically in the middle-load time. For service customers, the welfare lost calculated in this class occupies 13% of the total welfare lost in the whole electricity industry and the worst welfare lost is happening seasonally in summer, time periodically in the peak time Finally, this study was made based on the year of 2002 and KEPCO has practiced two times of rate change until now. The result of rate change was positively analyzed in the direction of economic welfare improvement(welfare improvement achieved by 16.3% compared to 2002 result).

  • PDF

Load Modeling based on System Identification with Kalman Filtering of Electrical Energy Consumption of Residential Air-Conditioning

  • Patcharaprakiti, Nopporn;Tripak, Kasem;Saelao, Jeerawan
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.45-53
    • /
    • 2015
  • This paper is proposed mathematical load modelling based on system identification approach of energy consumption of residential air conditioning. Due to air conditioning is one of the significant equipment which consumes high energy and cause the peak load of power system especially in the summer time. The demand response is one of the solutions to decrease the load consumption and cutting peak load to avoid the reservation of power supply from power plant. In order to operate this solution, mathematical modelling of air conditioning which explains the behaviour is essential tool. The four type of linear model is selected for explanation the behaviour of this system. In order to obtain model, the experimental setup are performed by collecting input and output data every minute of 9,385 BTU/h air-conditioning split type with $25^{\circ}C$ thermostat setting of one sample house. The input data are composed of solar radiation ($W/m^2$) and ambient temperature ($^{\circ}C$). The output data are power and energy consumption of air conditioning. Both data are divided into two groups follow as training data and validation data for getting the exact model. The model is also verified with the other similar type of air condition by feed solar radiation and ambient temperature input data and compare the output energy consumption data. The best model in term of accuracy and model order is output error model with 70.78% accuracy and $17^{th}$ order. The model order reduction technique is used to reduce order of model to seven order for less complexity, then Kalman filtering technique is applied for remove white Gaussian noise for improve accuracy of model to be 72.66%. The obtained model can be also used for electrical load forecasting and designs the optimal size of renewable energy such photovoltaic system for supply the air conditioning.

Short Term variability of the Phytoplankton Populations in Masan Bay: I. Dynamics (마산만 식물플랑크톤의 단기적 변화양상 : 1. 동태)

  • PAE, SE JIN;YOO, SIN JAE
    • 한국해양학회지
    • /
    • v.26 no.1
    • /
    • pp.67-76
    • /
    • 1991
  • Masan Bay is infamous for its severe eutrophication, exemplified by frequent red tide incidences and anoxic conditions. We carried out daily observations for 16 days at one site immediately after the summer rainy season in 1988 on the basis that shorter observation intervals be necessary to observe a process with high turnover rate. in spite of the relatively short survey period, we could observe dramatic changes in abundance and composition of the phytoplankton populations. Cell densities and chlorophyll concentrations changed in the magnitude of 70 and 10 times, respectively, Skeletonema costatum, a diatom species, dominated the first peak of phytoplankton biomass and was followed by Prorocentrum minimum, a dinoflagellate species, which occurred dominantly in the second peak after about a week, form the viewpoint of time scale, we suggest that at least a weekly sampling might be appropriate in complex coastal environments as Masan Bay. While stratification enabled high production in the surface layer, it hindered the transport of silicate from bottom to the surface, which in turn limited the prolonged growth of diatoms. Ensued second peaks of silicate and diatom abundance in the surface layer suggest periodic flux of silicate from bottom across the discontinuity driven by tidal currents.

  • PDF

A Study on Heat Transmission Through Roof Materials for Amimal Structures (축사용 지윤재료의 복사열전달에 관한 연구)

  • 장희대;김문기고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.4
    • /
    • pp.4544-4554
    • /
    • 1977
  • The objective of this study was to measure and compare the radiation heat load generated through a few chosen shade-materials that would protect animals from the direct solar radiation heat in summer condition. The results obtained from this study are as follows; 1. when the materials were used in original state, the most effective material for radiation heat reduction was slate, followed by aluminum and galvanized steel successively. 2. The radiation heat load under the white top and black underside aluminum was 2.5 Cal. per hour per square cm less than that under the bare aluminum of their diurnal peak. 3. When the modified galvanized steel was used, the radiation heat load was reduced as much as 2.4 cal per hour per square cm by attaching plywood under the galvanized steel, 3.9 cal per hour per square cm by attaching plywood and coating white paint on the top of the galvanized steel. The galvanized steel covered by hay material showes similar result as that of the galvanized steel lined with plywood. 4. In case of slate, the radiation heat reduction value was increased by using bare slate, white top slate and white-top-black-underside slate in the descending order. 5. The calculated value of radiosity of inside surface of aluminum was about 20 percent of the radiation heat load, the reduced value of radiosity by coating paint was considered to be indirect indication of the effect of total radiation heat load reduction of painted surface. 6. About an hour of the time lag of radiation heat load peak on sept. 10 for slate materials should be investigated more comprehensively in future.

  • PDF

Thermal Environment Characteristics of Permeable Cement Concrete Pavement( I ) ($\cdot$보수성 시멘트 콘크리트 포장의 열환경 특성( I ))

  • Ryu Nam-Hyong;Yoo Byung-Rim
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.6 s.107
    • /
    • pp.82-94
    • /
    • 2005
  • This study was undertaken to measure and analyze the thermal environment characteristics of the grey permeable cement concrete pavement(GPCCP), the permeable cement concrete brick pavement(PCCBP) compared with impermeable cement concrete pavement(ICCP) and bare soil(BS) under the summer outdoor environment. Following is a summary of major results. 1) The peak surface temperature was greatest in the GPCCP$(54.2^{\circ}C)$ followed by ICCP$(47.2^{\circ}C)$ rut August 2, 2002, the hottest day$(35.3^{\circ}C\;of\;highest\;temperature)$ during the experiment; peak temperature in the ICCP and BS were $45.5^{\circ}C)$ and $45.3^{\circ}C)$ respectively. 2) Analysis of heat budget of the pavements has revealed that the heat environment was worse in the GPCCP than that in the ICCP and that this was mainly due to a low albedo in the former(0.2) relative to that of the latter(0.4). 3) Analysis of heat budget of the pavements has revealed that the heat environment was worse in the GPCCP than that in the PCCBP, BS and that this was mainly due to a decreased latent heat resulting from a time dependent decreasing impact of rainfall. 4) It is necessary to make cool pavements to further studies on light-colored surface materials for attaining high albdo and construction methods which can enhance the latent heat through the continuous evaporation from pavements surface. 5) Vertical arrangement of pavement layers has not been considered in the present study, which has been focuses on the heat characteristics of the surface layer materials. Accordingly, future studies will have to be empasized on pavement methods including the vertical arrangement of the pavement layers.