• Title/Summary/Keyword: Sum-Rate Capacity

Search Result 65, Processing Time 0.028 seconds

Adaptive Resource Allocation for MC-CDMA and OFDMA in Reconfigurable Radio Systems

  • Choi, Yonghoon
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.953-959
    • /
    • 2014
  • This paper studies the uplink resource allocation for multiple radio access (MRA) in reconfigurable radio systems, where multiple-input and multiple-output (MIMO) multicarrier-code division multiple access (MC-CDMA) and MIMO orthogonal frequency-division multiple access (OFDMA) networks coexist. By assuming multi-radio user equipment with network-guided operation, the optimal resource allocation for MRA is analyzed as a cross-layer optimization framework with and without fairness consideration to maximize the uplink sum-rate capacity. Numerical results reveal that parallel MRA, which uses MC-CDMA and OFDMA networks concurrently, outperforms the performance of each MC-CDMA and OFDMA network by exploiting the multiuser selection diversity.

Secrecy Capacity for Full-Duplex Massive MIMO Relaying Systems With Low-Resolution ADCs

  • Antwi-Boasiako, Bridget Durowaa;Lee, Kyoung-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.286-287
    • /
    • 2019
  • In this paper, we consider an amplify-and-forward (AF) full duplex (FD) massive-antenna relay (or base station) aiding communication between K single-antenna source and destination pairs whose transmissions are overheard by one single-antenna eavesdropper. Maximum ratio combining (MRC) and maximum ratio transmission (MRT) processing is employed at the relay. The secrecy performance of the system is then derived with both relay and destination being equipped with low resolution analog-to-digital converters (ADCs). The results show the detrimental effect of the eavesdropper's presence on the sum rate of the system.

  • PDF

Efficient User Selection Algorithms for Multiuser MIMO Systems with Zero-Forcing Dirty Paper Coding

  • Wang, Youxiang;Hur, Soo-Jung;Park, Yong-Wan;Choi, Jeong-Hee
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.232-239
    • /
    • 2011
  • This paper investigates the user selection problem of successive zero-forcing precoded multiuser multiple-input multiple-output (MU-MIMO) downlink systems, in which the base station and mobile receivers are equipped with multiple antennas. Assuming full knowledge of the channel state information at the transmitter, dirty paper coding (DPC) is an optimal precoding strategy, but practical implementation is difficult because of its excessive complexity. As a suboptimal DPC solution, successive zero-forcing DPC (SZF-DPC) was recently proposed; it employs partial interference cancellation at the transmitter with dirty paper encoding. Because of a dimensionality constraint, the base station may select a subset of users to serve in order to maximize the total throughput. The exhaustive search algorithm is optimal; however, its computational complexity is prohibitive. In this paper, we develop two low-complexity user scheduling algorithms to maximize the sum rate capacity of MU-MIMO systems with SZF-DPC. Both algorithms add one user at a time. The first algorithm selects the user with the maximum product of the maximum column norm and maximum eigenvalue. The second algorithm selects the user with the maximum product of the minimum column norm and minimum eigenvalue. Simulation results demonstrate that the second algorithm achieves a performance similar to that of a previously proposed capacity-based selection algorithm at a high signal-to-noise (SNR), and the first algorithm achieves performance very similar to that of a capacity-based algorithm at a low SNR, but both do so with much lower complexity.

Power Configuration using Weighted Sum Genetic Algorithm in Femtocell System (가중치 합 유전자 알고리즘을 이용한 펨토셀 전력 설정 기법)

  • Hong, In;Hwang, Jae-Ho;Shon, Sung-Hwan;Kim, Jae-Moung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.6
    • /
    • pp.136-150
    • /
    • 2010
  • Due to the effect of indoor coverage problem, the QoS of the indoor users will be degraded dramatically, with the number of indoor users. The femto cell is a popular solution for such problems. Since the price of the femto base station is usually cheap enough, one can sets up huge number of base stations in a small indoor area to reduce the size of communication cell. In this way, the QoS of the indoor users can be improved significantly. Moreover, the data rate can also be increased. However, how to decide an ideal transmitting power according to the surrounding radio environment is not a trivial problem, that still has not been addressed well. If the transmit power of femto base station is too large, the interference to the macro users will be increased. Conversely, if the transmit power of femto base station is too small; the coverage of femto base station will be reduced. To address this problem, we propose a power configuration method in femto base station using Genetic Algorithm by investigating a new fitness function. Furthermore, we adopt the weighted sum approach to improve the user performance in different modes. The simulation results show that the proposed power configuration method can not only improves the downlink SINR, but also enhance the channel capacity for both the Macro cell systems and Femto cell systems compared with some conventional methods.

MAX-MIN Flow Control Supporting Dynamic Bandwidth Request of Sessions (세션의 동적 대역폭 요구를 지원하는 최대-최소 흐름제어)

  • Cho, Hyug-Rae;Chong, Song;Jang, Ju-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.638-651
    • /
    • 2000
  • When the bandwidth resources in a packet-switched network are shared among sessions by MAX-MIN flow control each session is required to transmit its data into the network subject to the MAX-MIN fair rate which is solely determined by network loadings. This passive behavior of sessions if fact can cause seri-ous QoS(Quality of Service) degradation particularly for real-time multimedia sessions such as video since the rate allocated by the network can mismatch with what is demanded by each session for its QoS. In order to alleviate this problem we extend the concept of MAX-MIN fair bandwidth allocations as follows: Individual bandwidth demands are guaranteed if the network can accommodate them and only the residual network band-width is shared in the MAX-MIN fair sense. On the other hand if sum of the individual bandwidth demands exceeds the network capacity the shortage of the bandwidth is shared by all the sessions by reducing each bandwidth guarantee by the MAX-MIN fair division of the shortage. we present a novel flow control algorithm to achieve this extended MAX-MIN fairness and show that this algorithm can be implemented by the existing ATM ABR service protocol with minor changes. We not only analyze the steady state asymptotic stability and convergence rate of the algorithm by appealing to control theories but also verify its practical performance through simulations in a variety of network scenarios.

  • PDF

Analysis of factors affecting effluent TOC in publicly owned treatment works (공공하수처리시설 방류수 TOC에 영향을 주는 요인 분석)

  • Kang, Seongju;Kang, ByongJun;Park, Kyoohong;Jeong, Donghwan;Lee, Wonseok;Chung, Hyenmi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.2
    • /
    • pp.141-150
    • /
    • 2019
  • Total organic carbon(TOC) was introduced as the water quality index of the rivers and lakes in 2013. This paper evaluated factors affecting effluent TOC concentrations and treated and discharged loads of existing publicly owned treatment works(POTWs). For selected POTWs with greater treatment capacity than $500m^3/day$, factorial analysis was used to consider effects of kinds of biological treatment processes, inflow of other types of wastewater(industrial, livestock, landfill leachate wastewater, etc.) with domestic wastewater, sewer separation rate, and effluent discharging zones in which different effluent criteria applied. As a result, those factors did not show significant effect on effluent TOC concentration of POTWs in effluent discharging zone I and II. However, In effluent discharging zone III and IV, kinds of biological treatment processes, the inclusion of other waste in influent of domestic wastewater, and the sewer separation rate were significant factors. The treated TOC load in POTWs was also not affected significantly by the variables set in this study. On the other hand, those three factors influenced significantly on the TOC load discharged to water bodies. The sum of factorial effects and the contribution rate of three factors to the discharged TOC load was 60.23 and 41%, 59.57 and 41%, and 42.04 and 18%, respectively.

Second Order Suboptimal Power Allocation for MIMO-OFDM Based Cognitive Radio Systems

  • Nguyen, Tien Hoa;Nguyen, Thanh Hieu;Nguyen, Van Duc;Ha, Duyen Trung;Gelle, Guilllaume;Choo, Hyunseung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2647-2662
    • /
    • 2014
  • This paper proposes an efficient and low complexity power-loading algorithm for MIMO-OFDM downlink based cognitive radio system that maximizes the sum rate of single secondary user (SU) under constraints on the tolerable interference thresholds between secondary user and primary user's frequency bands and the total transmission power. Our suboptimal algorithm is based on the $2^{nd}$ order interference tracking and nulling mechanism to allocate transmission power of the subcarriers among SU's scheme. The performance of our proposed suboptimal scheme is compared with the performance of the classical power loading algorithms, e.g., water filling, $1^{st}$ order interference tracking, nulling, and other suboptimal schemes. Numerical results show that our algorithm has low complexity but obtains a higher channel capacity than that of some previous suboptimal algorithms in some scenarios. We dedicate also that for a given interference threshold, the $2^{nd}$ order interference tracking mechanism has dynamic number of nulling position instead fixed number of nulling position.

QoS-Guaranteed Multiuser Scheduling in MIMO Broadcast Channels

  • Lee, Seung-Hwan;Thompson, John S.;Kim, Jin-Up
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.481-488
    • /
    • 2009
  • This paper proposes a new multiuser scheduling algorithm that can simultaneously support a variety of different quality-of-service (QoS) user groups while satisfying fairness among users in the same QoS group in MIMO broadcast channels. Toward this goal, the proposed algorithm consists of two parts: a QoS-aware fair (QF) scheduling within a QoS group and an antenna trade-off scheme between different QoS groups. The proposed QF scheduling algorithm finds a user set from a certain QoS group which can satisfy the fairness among users in terms of throughput or delay. The antenna trade-off scheme can minimize the QoS violations of a higher priority user group by trading off the number of transmit antennas allocated to different QoS groups. Numerical results demonstrate that the proposed QF scheduling method satisfies different types of fairness among users and can adjust the degree of fairness among them. The antenna trade-off scheme combined with QF scheduling can improve the probability of QoS-guaranteed transmission when supporting different QoS groups.

A Study on the Process Capability Analysis of MIM Product (금속분말 사출성형 제품의 공정능력분석에 관한 연구)

  • Choi, Byung-Ky;Lee, Dong-Gil;Choi, Byung-Hui
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.57-64
    • /
    • 2010
  • Metal Injection Molding (MIM) is attractive because it produces consistent, complex-geometry components for high-volume, high-strength, and high-performance applications. Also MIM using in optical communication field, display field, and semi-conductor field is a cost-effective alternative to metal machining or investment casting parts. It offers tremendous single-step parts consolidation potential and design flexibility. The objective of this paper is to study the suitability of design, flow analysis, debinding and sinterin processes, and capability analysis. The suitable injection conditions were 0.5~1.5 second filling time, 11.0~12.5 MPa injection pressure derived from flow analysis. The gravity of the product is measured after debinding an sintering. The maximum and minimum gravity levels are 7.5939 and 7.5097. the average and standard deviation are 7.5579 and 0.0122; when converted into density, the figure stands at 98.154%. According to an analysis of overall capacity, PPM total, which refers to defect per million opportunities(DPMO), stands at 166,066.3 Z.Bench-the sum of defect rates exceeding the actual lowest and highest limits-is 0.97, which translates into the good quality rate of around 88.4% and the sigma level of 2.47.

Development of the TVC Battery for High Voltage Loads in KSLV-I Upper Stage (KSLV-I 상단부 고전압 부하용 TVC 배터리 개발)

  • Kim, Myung-Hwan;Ma, Keun-Sum;Lim, You-Chol;Lee, Jae-Deuk
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.110-116
    • /
    • 2008
  • This paper gives a brief summary of the TVC battery design description, specifications and test results. The TVC battery for KSLV-I upper stage contains 168 Sony l8650VT high power lithium-ion cells. It configured as 2 strings in parallel, with each string containing 84 series connected cells. This allows to meet nominal 270V voltage and capacity requirements specified for the mission of the Thrust Vector Control(TVC) system. The loads profile of the TVC system has short duration, high current pulse. To power such a system with minimal mass, the battery employed l8650VT Cells. This cell is specifically designed for high rate applications and is capable of a 10C continuous discharge.

  • PDF