• Title/Summary/Keyword: Sulphonamide scaffold

Search Result 2, Processing Time 0.016 seconds

Design, Synthesis and Biological Evaluation of Some Novel Chalcones-sulphonamide Hybrids

  • Khanusiya, Mahammadali;Gadhawala, Zakirhusen
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.5
    • /
    • pp.377-385
    • /
    • 2018
  • A new class of Chalcone-Sulphonamide hybrids has been designed by condensing appropriate sulphonamide scaffold with substituted chalcones tethered by chloroacetyl chloride as a multi-target drug for therapeutic treatment. Chalcones were prepared by Claisen-Schmidt condensation of a substituted aldehyde with para aminoacetophenone. These Chalcone-Sulphonamide hybrids were screened by means of their antibacterial activity by NCCLS method. Among all these compounds, 5e and 5c displayed more potent growth inhibitory activity against Staphylococcus epidermidis and Pseudomonas aeruginosa bacteria respectively. Further, these hybrids were evaluated for their antifungal activity, among all hybrid 5a exhibited potent antifungal activity. The synthesized compounds were characterized by FT-IR, $^1HNMR$, $^{13}CNMR$ and HR-LCMS and spectral study supports the structures of synthesized Chalcone-Sulphonamide hybrids.

Chalcones-Sulphonamide Hybrids: Synthesis, Characterization and Anticancer Evaluation

  • Khanusiya, Mahammadali;Gadhawala, Zakirhusen
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.2
    • /
    • pp.85-93
    • /
    • 2019
  • A panel of chalcone-sulphonamide hybrids has been designed by tethering appropriate sulphonamide scaffold with substituted chalcones as a multi-target drug for anticancer screening. Chalcones were prepared by Claisen-Schmidt condensation reaction of a substituted aldehyde with para aminoacetophenone. All the synthesized compounds were evaluated against selected five cancer cell lines, MCF-7 (Breast cancer), DU-145 (Human prostate Carcinoma), HCT-15 (Colon cancer), NCIH-522 (stage 2, adenocarcinoma; non-small cell lung cancer) and HT-3 (Human cervical cancer). Most of the synthesized chalcone-sulphonamide hybrids showed amended cytotoxic activity against various cancer cell lines which may be attributed to the linkage of sulphonamide with chalcone skeleton. The synthesized compounds were characterized by FT-IR, $^1H$ NMR, $^{13}C$ NMR and HR-LCMS and spectral study assert the structures of synthesized sulphonamide-chalcone hybrids.