• Title/Summary/Keyword: Sulfuric acid dissolution

Search Result 41, Processing Time 0.027 seconds

A Study on the Dissolution of Aluminum Hydroxide with Mineral and Organic Acid (Aluminum Hydroxide의 유무기산(有無機酸)에 의한 용해특성(溶解特性) 연구(硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.56-61
    • /
    • 2009
  • The dissolution of domestic aluminum hydroxide of 99.7% purity has been performed with mineral and organic acid prior to the synthesis of aluminum compounds from aluminum solution. Mean particle size of aluminum hydroxide used in the work was $14.4{\mu}m$, $22.9{\mu}m$ and $62.3{\mu}m$, respectively and the effect of reaction temperature, concentration of acid and reaction time on the dissolution of aluminum hydroxide has been examined. As a result, the dissolution of aluminum hydroxide was increased with the concentration of HCl and more than 70% dissolution was obtained with 5 mole/l HCl at $70^{\circ}C$ for reaction time of 4 hr. As far as the dissolution of aluminum hydroxide with sulfuric acid was concerned, it was found that the optimum concentration of sulfuric acid was about 6 mole/l for the effective dissolution of aluminum hydroxide. When oxalic acid was used for the dissolution of aluminum hydroxide, nearly complete dissolution could be obtained by the dissolution for 16 hr with 1.0 mole/l oxalic acid at $90^{\circ}C$.

Effect of Solution Temperature and Bath Concentration on the Kinetics with Dissolution Reaction of Zinc-Ferrite (Zinc-ferrite의 용해 속도론에 미치는 황산 용액의 온도와 농도의 영향)

  • Oh Iee-Sik;Kim Chun-Jo
    • Resources Recycling
    • /
    • v.12 no.4
    • /
    • pp.30-37
    • /
    • 2003
  • A kinetics study on the dissolution reaction of zinc-ferrite has been made with aqueous sulfuric acid in various temperature and concentration. Fraction reacted(R) and apparent rate constant(K) increased with increasing temperature and concentration of sulfuric acid solution. The rate of dissolution is shown by $1-(1-K)^{1/3}=Kt$ for the initial stage of the reaction in aqueous sulfuric acid, where K is apparent rate constant, R is fraction reacted and t is reaction time, respectively. Activation energy associated with reaction was determined to be 16.3 kcal/mole. The dissolution of zinc-ferrite in sulfuric acid solution is dissolved by sto-ichiometric composition, but Fe and Zn did not dissolved, respectively.

Recovery of Platinum from Spent Petroleum Catalysts by Substrate Dissolution in Sulfuric Acid

  • Lee, Jae-Chun;Jinki Jeong;Kim, Wonbaek;Jang, Hee-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.472-477
    • /
    • 2001
  • Spent catalysts containing platinum were generated in petroleum refinery and other chemical industries. The reclamation of precious metals from such wastes has long been attempted in view of their rare, expensive and indispensable nature. In this study, the recovery of platinum from petroleum catalysts was attempted by a method consisting mainly of dissolving alumina substrate with sulfuric acid thereby concentrating insoluble platinum. Also, platinum dissolved partially in sulfuric acid was recovered by a cementation method using aluminum metal as a reductive agent. The effect of temperature, time, concentration of sulfuric acid. and pulp density on the dissolution of substrate was investigated. When the substrate of platinum catalyst was ${\gamma}$-AI$_2$O$_3$ about 95% alumina was dissolved in 6.0M sulfuric acid at 10$0^{\circ}C$ for 2 hours. When the substrate was the mixture of ${\gamma}$-A1$_2$O$_3$and $\alpha$-A1$_2$O$_3$about 92% was dissolved after 4 hours. As a result, more than 99% of platinum could be recovered by this method and aluminum sulfate was obtained as byproduct.

  • PDF

Comparison of the Chemical Reactivity between Sulfuric and Methanesulfonic Acids as a Leaching Agent (침출제로 황산과 메탄술폰산의 화학적 반응성 비교)

  • Tran, Thanh Tuan;Moon, Hyun Seung;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.41-46
    • /
    • 2021
  • Methanesulfonic acid (MSA) can be considered effective in the leaching of metals because of its advantageous physical and chemical properties. The chemical reactivities of MSA and sulfuric acid were compared based on their structures and the dissolution data of Co and Ni metal. The inductive and resonance effects play a vital role in the chemical reactivities of these two acids. The dissolution percentages of Co and Ni in the sulfuric acid solution were higher than those in the MSA solution under the same experimental conditions. Considering the strong acidity of MSA and the high solubility of its metal salts, MSA can be employed as a leaching agent for the recovery of metals.

A clean technology development using the iron(Fe) dissolution reaction with hydrogen peroxide (과산화수소를 이용한 철(Fe)선 용해반응에 따른 청정기술 개발에 관한 연구)

  • 김재우
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.4
    • /
    • pp.62-68
    • /
    • 2001
  • The advantages of hydrogen peroxide dissolution method were no discharge of noxious matter when dissolution of iron wire which used as the center supporter, reactions occur in room temperature and easy to recover dissolved iron. This study was aimed at gathering the basic data of iron wire dissolution- recovery process and proposes the reaction condition of iron wire dissolution- recovery process rind the factors influencing those reactions. The results were as follows : 1 . Hydrogen peroxide dissolution method used hydrochloric acid as the catalyst. 1. In the dissolution of iron wire(1.668 g), the condition of reaction was E1702(30 ml), HCI(20 ml) and $H_2O$(200 ml) ; time of the reaction was 18 min. P.W.(Piece weight) was 7.75 mg, and C.R. was $2.34{\;}{\Omega}$ 2. In the dissolution of iron wire(1.529 g), the condition of reaction was H7O2(30 ml), HCI(20 ml) and $H_2O$(200 ml), time of the reaction was 21 min., P.W.(Piece weight) was 7.73 mg, and C.R. was $2.35{\;}{\Omega}$. Hydrogen peroxide dissolution method used sulfuric acid as the catalyst. 1. In the dissolution of iron wire(0.834 g), the condition of reaction was $H_2O$(65 ml), $H_2SO_4$(5 ml) and 1702(5 ml) ; time of the reaction was 5 min.30 sec, P.W.(Piece weight) was 7.74 mg, and C.R. was $2.33{\;}{\Omega}$ 2. In the dissolution of iron wire(1.112 g), the condition of reaction was $H_2O$(65 ml), $H_2SO_4$(5 ml) and $H_2O_2$(5 ml) ; time of the reaction was 4 min.30 sec, P.W.(Piece weight) was 7.75 mg, and C.R. was $2.33{\;}{\Omega}$. Hydrogen peroxide dissolution method used hydrochloric acid and sulfuric acid as the catalyst confirmed a clean technology, because there were not occurred a pollutant discharged in the existing method.

  • PDF

Sulfuric Acid Dissolution of Carriers for Recovering Platinum from the Spent Petroleum Catalysts (석유 폐촉매로부터 백금 회수를 위한 담체의 황산용해)

  • Lee Jae-chun;Jeong Jinki;Kim Byung-su;Kim Min Seuk;Cho Young Soo
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.14-21
    • /
    • 2004
  • Spent catalysts containing platinum were generated in petroleum refinery and other chemical industries. The reclamation of platinum metals from such wastes has long been attempted in view of their rare, expensive and indispensable nature. In this study, the recovery of platinum from petroleum catalysts was attempted by a method consisting mainly of dissolving alumina carrier with sulfuric acid thereby concentrating insoluble platinum. Also, platinum dissolved partially in sulfuric acid was recovered by a cementation method using aluminum metal as a reductive agent. The effect of temperature, time, concentration of sulfuric acid, and pulp density on the dissolution of carrier was investigated. When the carrier of platinum catalyst was $\Upsilon-Al_2$O$_3$ about 95% alumina was dissolved in 6.0 M sulfuric acid at $100^{\circ}C$ for 2 hours. When the carrier was the mixture of $\Upsilon-Al_2$$O_3$ and $\alpha$-$Al_2$$O_3$ about 92% was dissolved after 4 hours. As a result, more than 99% of platinum could be recovered by this method and aluminum sulfate was also obtained as byproduct.

Studies on the Synthesis of the Isomeric 1-naphtholsulfonic Acids and Analysis of their Mixtures (1-나프톨 술폰산 이성체의 합성 및 혼합물의 분석에 관한 연구)

  • Sohn, Joo-Hwan;Kim, Kwang-Jea;Lee, Seung-Yeell
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.21-28
    • /
    • 1989
  • 1-naphthol-2-sulfonic acid and 1-naphthol-4-sulfonic acid were synthesized under the dissolution of 1-naphthol in 2-nitrotoluene with stirring 98.08-90% sulfuric acid at $5-95^{\circ}C$ for 1-5 hours. As the reaction temperatures and the reaction time were raised, the yield of 2-sulfonate was decreased, while that of 4-sulfonate was increased. But we could not observe the tendency to the various reaction concentrations of sulfuric acids. The mixtures of two isomeric 1-naphtholulfonic acids in excess concentrated sulfuric acids was quantitatively determinded by using multicomponent spectrophotomeric analysis method on the basis of the ultraviolet absorption peak of the sulfonic acids. The standard deviation in this method was ${\pm}\;2.6$, and the above method seem to be rapid and accurate.

Changes of Performance of Soil-Cement Barrier due to Migration of Acids (산 이동에 따른 심층혼합기둥체 차수벽의 성능변화)

  • 정문경;천찬란;이주형;김강석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.189-196
    • /
    • 2003
  • Soil-cement column is often used as a contaminant barrier. This study presents the results of experimental study performed to investigate the changes of properties of soil-cement column under the attack of acids. Sulfuric nitric, and ascetic acid were used as contaminants. Specimen were made of clayey and sandy soils with addition of cement and water Permeability of soil-cement decreased with time during permeability test. When significant amount of acid percolated the specimen, permeability increased and compressive strength decreased due to the dissolution and leaching of cement and its chemical reaction compounds. Sulfuric and nitric acid were more effective than ascetic acid in deteriorating soil-cement column. Amount of acid required to lower the pH of soil cement below 12 was calculated from the results of permeability tests. This leads to a conclusion that, under the conditions employed in this study, the chemical stability of soil-cement column could be maintained against acid attack for longer than generally accepted lifetime of contaminant barriers.

  • PDF

Enhanced extraction of copper and nickel based on the Egyptian Abu Swayeil copper ore

  • Somia T. Mohamed;Abeer A. Emam;Wael M. Fathy;Amany R. Salem;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.63-78
    • /
    • 2024
  • The continuous increasing of the global demand of copper and nickel metals raises the interest in developing alternative technologies to produce them from copper sulfide ore. Also, in line with Egypt's vision 2030 for achieving the sustainable socioeconomic development which aims at developing alternative and eco-friendly technologies for processing the Egyptian ores to produce these strategic products instead of its importing. These metals enhance the advanced electrical and electronic industries. The current work aims at investigating the recovery of copper and nickel from Abu Swayeil copper ore using pug leaching technique by sulfuric acid. The factors affecting the pug leaching process including the sulfuric acid concentration, leaching time and temperature have been investigated. The copper ore sample was characterized chemically using X-ray fluorescence (XRF) and scanning electron microscope (SEM-EDX). A response surface methodology develops a quadratic model that expects the nickel and copper leaching effectiveness as a function of three controlling factors involved in the procedure of leaching was also investigated. The obtained results showed that the maximum dissolution efficiency of Ni and Cu are 99.06 % and 95.30%, respectively which was obtained at the following conditions: 15 % H2SO4 acid concentration for 6 hr. at 250 ℃. The dissolution kinetics of nickel and copper that were examined according to heterogeneous model, indicated that the dissolution rates were controlled by surface chemical process during the pug leaching. The activation energy of copper and nickel dissolution were 26.79 kJ.mol-1 and 38.078 kJ.mol-1 respectively; and the surface chemical was proposed as the leaching rate-controlling step.

Determination of Electrode Potential in Micro Electrochemical Machining of Nickel (니켈의 미세 전해 가공 시 전극 전위의 선정)

  • Nam H.S.;Park B.J.;Kim B.H.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.585-588
    • /
    • 2005
  • The dissolution characteristic of metal shows the different tendency according to the applied electrical potential, the kind of electrolyte and pH value, etc. In the micro electrochemical machining (ECM), unfavorable oxide/passive layer formation and overall corrosion of electrodes must be prevented. The anodic polarization curve of nickel has distinct three dissolution regions, i.e. two active regions and the transpassive dissolution region. In this paper, the stable electrode potentials of workpiece and tool were determined in sulfuric acid and hydrochloric acid solution, respectively. In each solution, different machining property was shown and possible electrochemical reactions were discussed. On the basis of this experiment, the methodology to obtain the proper electrode potential was suggested.

  • PDF