A Study on the Dissolution of Aluminum Hydroxide with Mineral and Organic Acid

Aluminum Hydroxide의 유무기산(有無機酸)에 의한 용해특성(溶解特性) 연구(硏究)

  • Lee, Hwa-Young (Battery Research Center, Korea Institute of Science & Technology)
  • 이화영 (한국과학기술연구원 이차전지연구센터)
  • Published : 2009.04.27

Abstract

The dissolution of domestic aluminum hydroxide of 99.7% purity has been performed with mineral and organic acid prior to the synthesis of aluminum compounds from aluminum solution. Mean particle size of aluminum hydroxide used in the work was $14.4{\mu}m$, $22.9{\mu}m$ and $62.3{\mu}m$, respectively and the effect of reaction temperature, concentration of acid and reaction time on the dissolution of aluminum hydroxide has been examined. As a result, the dissolution of aluminum hydroxide was increased with the concentration of HCl and more than 70% dissolution was obtained with 5 mole/l HCl at $70^{\circ}C$ for reaction time of 4 hr. As far as the dissolution of aluminum hydroxide with sulfuric acid was concerned, it was found that the optimum concentration of sulfuric acid was about 6 mole/l for the effective dissolution of aluminum hydroxide. When oxalic acid was used for the dissolution of aluminum hydroxide, nearly complete dissolution could be obtained by the dissolution for 16 hr with 1.0 mole/l oxalic acid at $90^{\circ}C$.

알루미늄 화합물을 합성하기 위한 전단계 연구로써, 국산 99.7% 순도의 수산화알루미늄을 대상으로 무기산 및 유기산을 이용한 용해실험을 수행하였다. 본 실험에서 사용한 수산화알루미늄의 평균입도는 각각 $14.4{\mu}m$, $22.9{\mu}m$$62.3{\mu}m$이었으며, 반응온도, 산농도, 반응시간에 따른 수산화알루미늄 용해율을 조사하였다. 실험결과 염산에 의한 용해시 염산농도가 증가할수록 용해율은 증가하였으며, $70^{\circ}C$에서 4시간 용해시 염산농도 5 mole/l의 경우 70% 이상의 용해율을 보였다. 또한, 황산을 사용하여 수산화알루미늄을 용해하고자 하는 경우 적정 황산농도는 6 mole/l 부근으로 유지하는 것이 바람직하였다. 옥살산을 사용하는 경우 반응온도는 $90^{\circ}C$가 적절하며, 옥살산농도 1.0 mole/l, 고체농도 20 g/l의 조건에서 16시간 용해하였을 때 거의 100%에 근접하는 용해율을 얻을 수 있었다.

Keywords

References

  1. 이화영, 조성백, 2008 : 유기산을 이용한 Aluminum Hydroxide의 미량원소 제거연구, 한국자원리싸이클링학회지, 17(5), pp. 44-51
  2. Martin, E. S. and Weaver, M. L., 1993 : Synthesis and properties of high-purity alumina, American Ceramic Society Bulletin, 72, pp. 71-77
  3. Cameselle, C., Nunez, M. J. and Lema, J. M., 1997 : Leaching of kaolin iron-oxides with organic acids, J. Chem. Tech. Biotechnol., 70, pp.349-354 https://doi.org/10.1002/(SICI)1097-4660(199712)70:4<349::AID-JCTB791>3.0.CO;2-4
  4. P. Liu, et al., 2008 : Preparation of high purity spherical - alumina using a reduction-magnetic separation process, Journal of Physics & Chemistry of Solids, 69, pp. 799-804 https://doi.org/10.1016/j.jpcs.2007.09.005
  5. Hernandez, C., Banza, A. N. and Gock, E., 2007 : Recovery of metals from Cuban nickel tailings by leaching with organic acids followed by precipitation and magnetic separation, Journal of Hazardous Materials, B139, pp. 25-30
  6. Teir, S. et al., 2007 : Dissolution of natural serpentinite in mineral and organic acids, Int. J. Miner. Process., 83, pp. 36-46 https://doi.org/10.1016/j.minpro.2007.04.001
  7. U. S. Patent 4,428,912, 1984 : Regeneration of chloridizing agent from chlorination residue
  8. U. S. Patent 4,650,653, 1987 : Production of alumina from gibbsite-bearing bauxite of low reactive silica content
  9. U. S. Patent 4,789,485, 1988 : Clarification of Bayer process liquors
  10. U. S. Patent 6,447,738, 2002 : Coproducing alumina, iron oxide, and titanium dioxide from aluminum ore bodies and feedstocks
  11. C. Clar, A. N. Scian, and E. F. Aglietti, 2003 : Synthesis and characterization of aluminum carboxylate gels, Thermochimica Acta, 407, pp. 33-40 https://doi.org/10.1016/S0040-6031(03)00265-X
  12. L. Weng, D. Huang, and X. Jiang, 1993: Synthesis of aluminum nitride from aluminum citrate precursor, Materials Letters, 18, pp. 159-162 https://doi.org/10.1016/0167-577X(93)90118-H
  13. B. Dash, et ai., 2008: Acid dissolution of alumina from waste aluminum dross, Hydrometallurgy, 92, pp. 48-53 https://doi.org/10.1016/j.hydromet.2008.01.006