• Title/Summary/Keyword: Sulfuric acid

Search Result 1,088, Processing Time 0.033 seconds

Study on the Re-corrosion Characteristics of Corrosion Products by Weeping of Iron Artifacts (철제유물 Weeping에 따른 부식화합물의 재부식 특성 연구)

  • Park, Hyung-Ho;Lee, Hye-Youn;Lee, Jae-Sung;Yu, Jae-Eun
    • Journal of Conservation Science
    • /
    • v.29 no.3
    • /
    • pp.287-296
    • /
    • 2013
  • Excavated iron objects are preserved in stable condition through processes of conservation treatment because they are found in the form of various corrosion products. However, the conservation treatment leads to re-corrosion over time and accordingly, iron objects can be severely damaged, and therefore fundamental measures need to be prepared to control it. In this study, the types and characteristics of corrosion products were scientifically analyzed according to the re-corrosion of iron artifacts. In addition, the stability of the corrosion products was evaluated by exposing the standard samples under the re-corrosion environment. Re-corrosion proceeded with weeping in reddish brown on the cracks of iron artifacts. Weeping was detected akagan$\acute{e}$ite had a low hydrogen ion concentration and high chloride ion. The selection of standard sample goethite, lepidocrocite, hematite, and magnetite, were evaluated corrosive by weeping. After the samples were immersed in HCl(pH 1), $H_2SO_4$(pH 1), $H_2O$(pH 6) solution, they had been maintained for 180 days in relative humidity of 20%, 50%, 80% to investiage the changes of chemical components. As a result of analysis, the changes of chemical components were not showed in goethite, lepidocrocite, and hematite. But magnetite was changed to lepidocrocite in solution including chloride ion($Cl^-$) and to goethite and lepidocrocite solution including sulfuric acid($SO{_4}^{2-}$). Results of the study, in the case of magnetite known as s stable corrosion compound, it was identified the corrosion of magnetite occurs by corrosive ions, which means weeping generated in the iron artifacts can corrode magnetite as well as base metal.

Characteristics of Ammonia in Alkaline Stabilization Facility of Sludge from Sewage Treatment Plant (하수처리오니 알칼리 안정화 처리시설에서의 암모니아 발생특성)

  • Kim, Yong-Jun;Chung, David;Jeong, Mi-Jeong;Yoo, Hye-Young;Yoon, Cheol-Woo;Shin, Sun-Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.23-33
    • /
    • 2016
  • The characteristics of ammonia generated from alkaline stabilization facilities was investigated which are for organic sewage sludge from wastewater treatment plants. The highest concentration of ammonia was found in mixing and curing process in alkaline stabilization facility and ammonia mainly showed a range of 87.78 ppm($66.62mg/m^3$) to 1,933 ppm($1,467.01mg/m^3$) by detection tube. This is presumed to occur because nitrogen oxides are converted into ammonia as the sewage sludge is mixed with lime. In some facilities, hydrogen sulfide and methyl mercaptan were detected in relatively high concentrations, but odor materials except ammonia were not detected in most of the facilities. The concentration of ammonia caused by process was generally high in the order of "mixing > curing > output > storage > drying > input." It was found that odor compounds are removed by wet absorption using sulfuric acid and sodium hypochlorite in the 5 alkaline stabilization facilities currently in operation. Each facility was designed to meet the concentration of after-treatment emission in 1 ppm($0.76mg/m^3$), 50 ppm($37.95mg/m^3$) or 100 ppm($75.89mg/m^3$), but no facility satisfied the design standard for their emssion limit. In case of ammonia, some workplaces in alkaline stabilization facilities exceeded the exposure limits established by the Ministry of Labor. It appears that proper ventilation should be provided for the safety of workers in future. No odor compound including ammonia was found by detection tubes in the border of the facilities, but trace amounts of odor compounds are expected to exist, given the current operational status of facilities.

Flavor Pattern and Sensory Properties of Meat Flavor Based on Maillard Reaction Products with Supercritical Fluid Extracted Lard Fractions (초임계 추출 Lard를 이용한 Maillard 반응생성물 유래 육류향미제의 향기패턴 및 관능적 특성)

  • Moon, Ji-Hye;Choi, In-Wook;Choi, Hee-Don;Kim, Yoon-Sook
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.644-651
    • /
    • 2012
  • We have investigated the effect of lard fraction extracted with supercritical carbon dioxide (SC-$CO_2$) on the flavor enhancement of maillard reaction product (MRP) based meat flavors. MRP based meat flavors were prepared with low glutamic acid (Glu) hydrolyzed wheat gluten (NaCl concentration: 7.61%(w/v)), ribose, cysteine, garlic juice powder, protease-digested Lentinus edodes powder and lard fractions extracted with SC-$CO_2$. Lard was extracted with SC-$CO_2$ at each of three temperatures (40, 60, and $80^{\circ}C$) and at each of four pressures (30, 40, 50, and 60 MPa). Obtained lard SC-$CO_2$ fractions and MRP based meat flavors with those fractions were analyzed for their total yield, aroma pattern by SMart nose system, and sensorial properties. The extraction yield had no difference as temperature increased from $40^{\circ}C$ to $60^{\circ}C$ and even decreased at $80^{\circ}C$. However, increase in pressure level at $40^{\circ}C$ drastically increased the extraction yield. The aroma patterns of raw lard and lard SC-$CO_2$ fractions with 30 MPa were significantly discriminated from those of SC-$CO_2$ lard fractions extracted with higher pressure by SMart nose system. Aroma pattern of MRP based meat flavors with higher pressure extracted lard fractions also showed significant difference through pattern analysis by the SMart nose system. The MRP based meat flavor with lard SC-$CO_2$ fractions at 50 and 60 MPa were described as less sulfuric, less pungent, and more balanced in roasted meat and sweet attributes from sensory evaluation.

Composition and emission characteristics of fine particulate matters at the 1100 Site of Mt. Halla during 2011-2012 (한라산 1100고지 대기 미세먼지의 조성 및 배출 특성: 2011~2012년 측정)

  • Song, Jung-Min;Bu, Jun-Oh;Kim, Won-Hyung;Ko, Hee-Jung;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.209-218
    • /
    • 2016
  • PM10 and PM2.5 samples were collected at the 1100 site of Mt. Halla in Jeju Island during 2011~2012, and their ionic and elemental species were analyzed, in order to investigate the characteristics of emission sources as well as aerosol compositions. The mass concentrations of PM10 and PM2.5 were 22.0±13.1 µg/m3 and 11.3±6.1 µg/m3, respectively, showing 2.4~2.6 times lower than those of the capital city area of Korea. The composition ratios of major secondary pollutants (nss-SO42−, NH4+, and NO3) were the highest as 85.5 % for PM10 and 91.3 % for PM2.5, and followed by the order of marine (Na+, Cl, and Mg2+), organic acid (HCOO and CH3COO), and soil (nss-Ca2+) sources. Among the elemental species in PM10, soil-originated components (Al, Fe, and Ca) were consisted of 50.9 %, which was higher proportion than marine and anthropogenic elements. The acidification of the fine particulate matters was found to be influenced mostly by sulfuric and nitric acids, and these acids were mainly neutralized by calcium carbonate in PM10 and by ammonia in PM2.5. The clustered back trajectories showed that 47 % of total air mass inflows was from the China, and the concentrations of NO3 and nss-Ca2+ were especially high corresponding to the inflows.

Improvement of Analytical Method for Total Polysaccharides in Aloe vera Gel (알로에 베라(Aloe vera) 겔 중 총 다당체 시험법 개선)

  • Lee, Young-Joo;Kim, Yun-Je;Leem, Dong-Gil;Yoon, Tae-Hyung;Shin, Ji-Eun;Yoon, Chang-Yong;Kim, Jung-Hoon;Park, Mi-Sun;Kang, Tae-Seok;Jeong, Ja-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.271-276
    • /
    • 2012
  • This study intented to standardize the method for total polysaccharide, which is a functional marker for aloe vera gel in Korea. We used four lyophilized raw materials and commercial aloe gel products, certified as Health Functional Food by Korea Food and Drug Administration, including powder, solution, jelly, tablet and capsule, to optimize the analytical condition of dialysis and phenol-sulfuric acid reaction in polysaccharide analysis. The optimal conditions for polysaccharide analysis included 1 L water for dialysis and change 3 times for 24hr against 25 mL prepared sample solution. Validation test showed lower than 5% of coefficient of variation(CV) in intra-, interday validation in lyophilized raw materials and 4 types of commercial products. In inter-person and inter-laboratory validation with 4 persons from 4 different laboratories, CV(%) were 5.50 and 6.64 respectively. The linearity of polysaccharide analysis was assessed using 5 serial concentration of lyophilized raw materials(0.1, 0.2, 0.3, 0.4, 0.5%(w/v)). The results showed $R^2{\geq}0.995$ of high linearity. In the commercial aloe vera gel products, the results of reproductivity showed lower than 7.08% and revealed that the standardized method from this study ensured high precision for polysaccharide analysis.

Preparation of Ni-doped Gamma Alumina from Gibbsite and Its Characteristics (깁사이트로부터 니켈피착 감마알루미나의 제조 및 특성)

  • Lee, Hyun;Chung, In-Sung;Park, Hee-Chan
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1158-1164
    • /
    • 1998
  • Aluminium sulfate solution was prepared by sulfuric acid treatment from gibbsite. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was precipitated from aluminium sulfate solution by adding it into ethylalcohol. From XRD analysis as-prepared $Al_2(SO_4)_3$ · $nH_2O$ was confirmed to have mixed-crystalization water(n=18, 16, 12, 6). The average water of crystalization calculated from thermogravimetry(TG) was 14.7. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was thermally decomposed and converted to $Al_2(SO_4)_3$ at $800^{\circ}C$, $\gamma-Al_2O_3$ at $900-1000^{\circ}C$, and $\alpha-Al_2O_3$ at $1200^{\circ}C$. Ni-doped $\gamma-Al_2O_3$, was synthesized from the slurry of as-prepared $\gamma-Al_2O_3$, with the ratio of [Ni]/[Al]=0.5. The reaction conditions of synthesis were determined as initial pH 9.0 and temperature $80^{\circ}C$ The basicity(pH) of slurry was controlled by using urea and $NH_4OH$ solution. Urea was also used for deposition-precipitation. For determining termination of reaction, the data acquisition was performed by oxidation reduction potential(ORP), conductivity and pH value in the process of reaction. Termination of the reaction was decided by observing the reaction steps and rapid decrease in conductivity. On the other hand, BET(Brunauer, Emmett and Teller) and thermal diffusity of Ni- doped $\gamma-Al_2O_3$, with various content of Ni were measured and compared. Thermal stability of Ni- doped $\gamma-Al_2O_3$ at $1250^{\circ}C$ was confirmed from BET and XRD analysis. The surface state of Ni-doped $\gamma-Al_2O_3$ was investigated by X-ray photoelectron spectroscopy(XPS). The binding energy at $Ni2P_{3/2}$ increased with increasing the formation of $NiAl_2O_4$ phase.

  • PDF

A Novel Volumetric Method for Quantitation of Titanium Dioxide in Cosmetics (용량분석법을 이용한 화장품 중 티타늄옥사이드의 정량)

  • Kim, Young-So;Kim, Boo-Min;Park, Sang-Chul;Jeong, Hye-Jin;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.4 s.54
    • /
    • pp.289-293
    • /
    • 2005
  • Nowadays there are many sun protection cosmetics including organic or inorganic UV filter as an active ingredient. Chemically stable inorganic sunsEreen agents, usually metal oxides, we widely employed in high SPF products. Titanium dioxide is one of the most frequently used inorganic UV filters. It has been used as pigments for a long period of cosmetic history. With the development of micronization techniques, it becomes possible to incorporate titanium dioxide in sunscreen formulations without whitening effect and it becomes an important research topic. However, there are very few works related to quantitations of titanium dioxide in sunscreen products. In this research, we analyzed amounts of titanium dioxide in sunscreen cosmetics by adapting redof titration, reduction of Ti(IV) to Ti(III) and reoxidation to Ti(IV). After calcification of other organic ingredients of cosmetics, titanium dioxide is dissolved by hot sulfuric acid. The dissolved Ti(IV) is reduced to the Ti(III) by adding aluminum metals. The reduced Ti(III) is titrated against a standard oxidizing agent, Fe(III) (ammonium iron(III) sulfate), with potassium thiocyanate as an indicator In order to test accuracy and applicability of the proposed method, we analyzed the amounts of titanium dioxide in four types of sunscreen cosmetics, such as cream, make-up base, foundation and powder, after adding known amounts of titanium dioxide $(1{\sim}25w/w%)$. The percent recoveries of the titanium dioxide in four types of formulations were in the range between 96 and 105%. We also analyzed 7 commercial cosmetic products labeled titanium dioxide as an ingredient and compared the results with those of obtained from ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry), one of the most powerful atomic analysis techniques. The results showed that the titrated amounts were well coincided with the analyzed amounts of titanium dioxide by ICP-AES. Although instrumental analytical methods, ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) and ICP-AES, are the best for the analysis of titanium, it is hard to adopt because of their high prices for small cosmetic companies. It was found that the volumetric method presented here gat e quantitative and reliable results with routine lab-wares and chemicals.

Acidification of Pig Slurry with Sugar for Reducing Methane Emission during Storage (메탄 배출 저감을 위한 설탕을 이용한 돈 슬러리의 산성화)

  • Im, Seongwon;Oh, Sae-Eun;Hong, Do-giy;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.81-89
    • /
    • 2019
  • The major problem encountered during the storage of pig slurry (PS) is the release of huge amounts of greenhouse gases (GHGs), which are dominated by methane ($CH_4$). To reduce this, concentrated sulfuric acid has been used as an additive to control the pH of pig slurry to 5.0-6.0. However, other low-risk substitutes have been developed due to some limitations to its use, such as corrosiveness, and hazards to animal and human health. In this study, sugar addition was proposed as an eco-friendly approach for limiting $CH_4$ emission from PS during storage. The pH of PS has been reduced from $7.1{\pm}0.1$ (control) to $5.8{\pm}0.1$, $4.6{\pm}0.1$, $4.4{\pm}0.1$, $4.1{\pm}0.1$, and $4.0{\pm}0.1$, by the addition of 10, 20, 30, 40, and 50 g sugar/L, respectively. Lactate, acetate, and propionate were detected as the dominant organic acids and at sugar concentration above 20 g/L, lactate concentration represented 42-72% (COD basis) of total organic acids. For 40 d of storage, $20.6{\pm}2.3kg\;CO_2\;eq./ton\;PS$ was emitted in the control. Such emission, however, was found to be reduced to $8.7{\pm}0.4$ and $0.4{\pm}0.1kg\;CO_2\;eq./ton\;PS$ at 10 and 20 g/L, respectively. Small amount of $CH_4$ from PS at 10 g/L was emitted until 30 d of storage, while for rest of storage period, it has increased to $8.7{\pm}0.4kg\;CO_2\;eq./ton\;PS$ ( 40% of the control) when methanogens have recovered by increasing pH to 7.0. By the end of storage, VS and COD removal in the control reached 24% and 27%, while their ranges reached 15-4% and 12-17% in the sugar added experiments, respectively. It was found that more than 90% of COD removal was done by aerobic biological process.