DOI QR코드

DOI QR Code

Flavor Pattern and Sensory Properties of Meat Flavor Based on Maillard Reaction Products with Supercritical Fluid Extracted Lard Fractions

초임계 추출 Lard를 이용한 Maillard 반응생성물 유래 육류향미제의 향기패턴 및 관능적 특성

  • Received : 2012.05.14
  • Accepted : 2012.09.02
  • Published : 2012.10.31

Abstract

We have investigated the effect of lard fraction extracted with supercritical carbon dioxide (SC-$CO_2$) on the flavor enhancement of maillard reaction product (MRP) based meat flavors. MRP based meat flavors were prepared with low glutamic acid (Glu) hydrolyzed wheat gluten (NaCl concentration: 7.61%(w/v)), ribose, cysteine, garlic juice powder, protease-digested Lentinus edodes powder and lard fractions extracted with SC-$CO_2$. Lard was extracted with SC-$CO_2$ at each of three temperatures (40, 60, and $80^{\circ}C$) and at each of four pressures (30, 40, 50, and 60 MPa). Obtained lard SC-$CO_2$ fractions and MRP based meat flavors with those fractions were analyzed for their total yield, aroma pattern by SMart nose system, and sensorial properties. The extraction yield had no difference as temperature increased from $40^{\circ}C$ to $60^{\circ}C$ and even decreased at $80^{\circ}C$. However, increase in pressure level at $40^{\circ}C$ drastically increased the extraction yield. The aroma patterns of raw lard and lard SC-$CO_2$ fractions with 30 MPa were significantly discriminated from those of SC-$CO_2$ lard fractions extracted with higher pressure by SMart nose system. Aroma pattern of MRP based meat flavors with higher pressure extracted lard fractions also showed significant difference through pattern analysis by the SMart nose system. The MRP based meat flavor with lard SC-$CO_2$ fractions at 50 and 60 MPa were described as less sulfuric, less pungent, and more balanced in roasted meat and sweet attributes from sensory evaluation.

MRP유래 육류 향미제의 향미 증강을 위하여 리보오스와 저 Glu 소맥글루텐 산 가수분해물을 기본 기질로 한 향미 조성물에 온도와 압력 조건별로 추출한 lard SC-$CO_2$ 분획을 첨가하여 향미제를 제조하였다. 이렇게 제조된 육류 향미제의 SMart nose를 이용한 향기패턴과 관능적 특성을 비교분석하여 향 특성이 우수한 육류 향미제를 개발하고자 하였다. Lard SC-$CO_2$분획 추출시 $40^{\circ}C$ 이상의 온도에서는 추출 수율이 증가하지 않았으며, 추출온도를 $40^{\circ}C$로 고정하여 30-60 MPa의 압력에서 추출하였을 때 40 MPa 이상에서 추출효율이 크게 증가하였다. 추출된 lard SC-$CO_2$ 분획들의 SMart nose를 이용한 향기패턴 분석을 실시한 결과, $40^{\circ}C$에서 원료 lard와 30 MPa에서 추출한 lard SC-$CO_2$ 분획의 향기패턴은 40 MPa 이상의 압력에서 추출한 분획들과 구별되었으나 40 MPa 이상의 압력에서 추출한 분획들은 서로 유사한 향기패턴을 나타내었다. 그러나 40 MPa 이상 압력 추출 lard SC-$CO_2$ 분획은 다른 flavor전구체와 반응시켰을 때 다른 전구체들과의 상호반응을 통해 뚜렷한 향기패턴의 차이를 나타내었다. 관능검사 결과 MRP based 육류향미제의 전체적 기호도는 $40^{\circ}C$, 50 MPa에서 추출한 lard SC-$CO_2$ 분획을 첨가한 MRP based meat flavor과 $40^{\circ}C$, 60 MPa에서 추출한 lard SC-$CO_2$ 분획첨가 MRP based meat flavor가 가장 높게 나타났다. 따라서 육류 향 증강 MRP based meat flavor의 전구체로 lard를 초임계 추출하기 위한 최적 조건은 $40^{\circ}C$에서 압력을 50 및 60 MPa로 이 조건에서 추출시 높은 경제성과 관능적 우수성이 확보된 육류 향미제 생산이 가능하다고 판단된다.

Keywords

References

  1. Campo, M. M., Nute, G. R., Wood, J. D., Elmore, S. J., Mottram, D.S., and Enser, M. (2003) Modelling the effect of fatty acids in odour development of cooked meat in vitro: part Isensory perception. Meat Sci. 63, 367-375. https://doi.org/10.1016/S0309-1740(02)00095-5
  2. Chao, R. R. (1996) Supercritical $CO_{2}$ extraction of meat products and edible animal fats for cholesterol reduction. In: Supercritical fluid technology in oil and lipid chemistry. King, J. W., and List, G. R. (eds) AOCS press, IL, pp. 230-243.
  3. Elmore, J. S., Mottram, D. S., Enser, M., and Wood, J. D. (1999) Effect of the polyunsaturated fatty acid composition of beef muscle on the profile of aroma volatiles. J. Agric. Food Chem. 47, 1619-1625. https://doi.org/10.1021/jf980718m
  4. Elmore, J. S., Warren, H. F., Mottram, D. S., Scollan, N. D., Enser, M., Richardson, R. I., and Wood, J. D. (2004) A comparison of the aroma volatiles and fatty acid compositions of grilled beef muscle from Aberdeen Angus and Holstein-Friesian steers fed digest based on silage or concentrates. Meat Sci. 68, 27-33. https://doi.org/10.1016/j.meatsci.2004.01.010
  5. Greentert, M. (1990) Identification and formation of some selected sulphur-containing flavour compounds in various meat model systems. J. Agric. Food Chem. 38, 2027-2041. https://doi.org/10.1021/jf00101a007
  6. Joung, S. N., Kim, S. T., and Yoo, K. P. (2001) Ultra drycleaningtechnology using supercritical carbon dioxide. Clean Technol. 7, 13-25.
  7. Kazazi, H., Rezaei, K., Ghotb-sharif, S. J., Emam-Djomeh, Z., and Yamini, Y. (2007) Supercritical fluid extraction of flavors and fragrances from Hyssopus officinalis L. cultivated in Iran. Food Chem. 105, 805-811. https://doi.org/10.1016/j.foodchem.2007.01.059
  8. Kim, J. Y., Jang, J. S., Lee, J. W., and Lee, K. T. (2008) Flavor pattern analysis of imported wines using electronic nose system. J. East Asian Soc. Dietary Life. 18, 14-21.
  9. MacLeod, G. and Ames, J. M. (1988) Soy flavor and its improvement. Crit. Rev. Food Sci. 27, 219-400. https://doi.org/10.1080/10408398809527487
  10. Merkle, J. A. and Larick, D. K. (1995) Fatty acid content of supercritical carbon dioxide extracted fractions of beef fat. J. Food Sci. 60, 959-962. https://doi.org/10.1111/j.1365-2621.1995.tb06270.x
  11. Moody, W. G. (1983) Beef flavor-a review. Food Technol. 37, 227-232, 238.
  12. Moon, J. H., Choi, I. W., Park, Y. K., and Kim, Y. S. (2011) Development of natural meat-like flavor based on Maillard reaction products. Korean J. Food Sci. An. 31, 129-138. https://doi.org/10.5851/kosfa.2011.31.1.129
  13. Mottram, D. S. (1998) Flavour formation in meat and meat products: a review. Food Chem. 62, 415-424. https://doi.org/10.1016/S0308-8146(98)00076-4
  14. Mottram, D. S. and Edwards, R. A. (1983) The role of triglycerides and phospholipids in the aroma of cooked beef. J. Sci. Food Agric. 34, 517-522. https://doi.org/10.1002/jsfa.2740340513
  15. Nawar, W. W. (1969) Thermal degradation of lipids: a review. J. Agric. Food Chem. 17, 18-21. https://doi.org/10.1021/jf60161a012
  16. Rezaei, K. and Temelli, F. (2001) On-line extraction-reaction of canola oil using immobilized lipase in supercritical $CO_{2}$. J. Supercrit. Fluid. 19, 263-274. https://doi.org/10.1016/S0896-8446(00)00099-1
  17. de Roos, K. B. (1992) Meat flavour generation from cysteine and sugars. In: Flavor Precursors: Thermal and Enzymatic Conversions, ACS Sym Ser 490. Teranski, R., Takeoka, G. R., and Guentert, M. (eds) American Chemical Society, Washington, DC, pp. 203-216.
  18. Son, H. J., Kang, J. H., Hong, E. J., Lim, C. L., Choi, J. Y., and Noh, B. S. (2009) Authentication of sesame oil with addition perilla oil using electronic nose based on mass spectrometry. Korean J. Food Sci. Technol. 41, 609-614.
  19. Taylor, D. L. and Larick, D. K. (1995) Investigations into the effect of supercritical carbon dioxide extraction on the fatty acid and volatile profiles of cooked chicken. J. Agric. Food Chem. 43, 2369-2374. https://doi.org/10.1021/jf00057a010
  20. Werkhoff, P., Bruening, J., Emberger, R., Guentert, M., Koepsel, M., Kuhn, W., and Surburg, H. (1990) Isolation and characterization of volatile sulfur-containing meat flavor components in model systems. J. Agric. Food Chem. 38, 777-791. https://doi.org/10.1021/jf00093a041
  21. Yoo, B. S., Lee, H. T., Ko, S. R., Yang, D. C., and Byun, S. Y. (2000) Studies on the extraction of polyacetylene from Korean ginseng using supercritical carbon dioxide. Korea J. Biotechnol. Bioeng. 15, 80-83.