• Title/Summary/Keyword: Sulfuric Acid Decomposition

Search Result 35, Processing Time 0.02 seconds

Nitridation Behavior of Kaolin with Reduced Alumina Content Obtained by Acid Treatment (산처리에 의하여 알루미나 함량을 줄인 카올린의 질화거동)

  • 배원태;정원도;조철구
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.347-356
    • /
    • 1992
  • Various kaolin samples with different alumina content were prepared from calcined admixture of kaolin and ammonium sulfate by varying the treatment time in sulfuric acid. Samples were nitridated under N2 or N2-H2 atmosphere with changing the amount of added carbon, the reaction time and temperature. As the alumina content lowered, the size of kaolin particles decreased and the specific surface area increased. XRD analysis indicated that ${\alpha}$-quartz remained by decomposition of halloysite and meta-halloysite. Experimental results of nitridation behavior are summerized as follows; 1) Nitridation under N2 atmosphere. With the increase of C/SiO2 ratio and with the decrease of Al2O3 content, disappearance of XRD pattern peaks of mullite, ${\alpha}$-quartz and ${\alpha}$-Al2O3 were accelerated at 1300$^{\circ}C$. SiC was the main phase in the reaction product of acid-treated kaolin samples nitridated at 1300$^{\circ}C$ for 10 hours regardless of C/SiO2 ratio. But the XRD peak intensities of ${\beta}$-Si3N4, ${\beta}$-sialon and SiC did not show much difference when untreated raw kaolin was fired at the same condition. When the ratio of C/SiO2 was 3.5, ${\beta}$-sialon and ${\beta}$-Si3N4 existed in the reaction product of about 22% alumina containing kaolin sample fired at 1350$^{\circ}C$ for 7 hours. Only ${\beta}$-sialon existed in the same sample fired at 1400$^{\circ}C$ for 10 hours. ${\beta}$-sialon was obtained from all of the acid-treated kaolin samples fired at 1400$^{\circ}C$ for 40 hours, but AlN and SiC remained in the untreated kaolin sample. Z value of the ${\beta}$-sialon obtained from the 22% alumina containing kaolin sample fired at 1400$^{\circ}C$ for 40 hours was about 1.3(XRD) and 1.5(EDS). 2) Nitridation under 80N2+2OH2 mixed gas atmosphere with the C/SiO2 ratio of 1 Mullite was not found, but ${\alpha}$-Si3N4, and ${\beta}$-sialon were present in the reaction product of about 22% alumina containing kaolin sample fired at 1300$^{\circ}C$ for 10 hours. When untreated kaolin sample was nitridated at the same condition, mullite remained. AlN and SiC were not found in the reaction product of about 22% alumina containing kaolin sample fired at 1350$^{\circ}C$ for 5 hours. On the other hand, AlN and SiC remained in the product of untreated kaolin fired at the same condition.

  • PDF

Decomposition and Leaching of Bastnasite by Sulfation and Recovery of Cerium Hydroxide from Leached Solution (황산화반응에 의한 불탄산염 희토류광(Bastnasite)의 분해, 침출 및 세륨수산화물의 회수)

  • Yoon, Ho-Sung;Kim, Sung-Don;Kim, Chul-Joo;Kim, Jun-Soo;Han, Choon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.407-412
    • /
    • 1998
  • This study was carried out to investigate the optimum leaching conditions for the sulfation and water leaching, and separation of cerium from rare earth elements in leached solution by acid-adjusting method. The optimum conditions for the sulfation and water leaching from bastnasite concentrates are that the equivalent ration of sulfuric acid to concentrates is 2.5, calcination temperature and time are $600^{\circ}C$ and 2 hrs respectively, and the pulp density in the water leaching is 9.1%. The yield of rare earth oxide is about 93% at the above condition. The process of recovery of cerium hydroxide from leached solution by acid-adjusting method was carried out as following steps. The first step is the oxidation of the solution at pH 5 by using twice the equivalent of $H_2O_2$ solution as an oxidant. The second step is the precipitation to obtain cerium complex salt and cerium hydroxide after lowering the solution to pH 2. The last step is the oxidation-precipitation by using equivalent of $H_2O_2$ solution. From these results, it was possible to prepare cerium hydroxide with the yield of 60% and the quality of 80%.

  • PDF

Study on Affecting Variables Appearing through Chemical Pretreatments of Poplar Wood (Populus euramericana) to Enzymatic Hydrolysis (이태리 포플러의 화학적 전처리 공정을 통한 효소가수분해 영향 인자 분석)

  • Koo, Bon-Wook;Park, Nahyun;Yeo, Hwanmyeong;Kim, Hoon;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.255-264
    • /
    • 2009
  • To evaluate the effects of chemical pretreatments of lignocellulosic biomass on enzymatic hydrolysis process, Populus euramericana was pretreated for 1 hr with 1% sulfuric acid ($H_2SO_4$) at $150^{\circ}C$ and 1% sodium hydroxide (NaOH) at $160^{\circ}C$, respectively. Before the enzymatic hydrolysis, each pretreated sample was subjected to drying process and thus finally divided into four subgroups; dried or non-dried acid pretreated samples and dried or non-dried alkali pretreated samples and chemical and physical properties of them were analyzed. Biomass degradation by acid pretreatment was determined to 6% higher compared to alkali pretreatment. By the action of acid ca. 24.5% of biomass was dissolved into solution, while alkali degraded ca. 18.6% of biomass. However, reverse results were observed in delignification rates, in which alkali pretreatment released 2% more lignin fragment from biomass to the solution than acid pretreatment. Unexpectedly, samples after both pretreatments were determined to somewhat higher crystallinity than untreated samples. This result may be explained by selective disrupture of amorphous region in cellulose during pretreatments, thus the cellulose crystallinity seems to be accumulated in the pretreated samples. SEM images revealed that pretreated samples showed relative rough and partly cracked surfaces due to the decomposition of components, but the image of acid pretreated samples which were dried was similar to that of the control. In pore size distribution, dried acid pretreated samples were similar to the control, while that in alkali pretreated samples was gradually increased as pore diameter increased. The pore volume which increased by acid pretreatment rapidly decreased by drying process. Alkali pretreatment was much more effective on enzymatic digestibility than acid pretreatment. The sample after alkali pretreatment was enzymatically hydrolyzed up to 45.8%, while only 26.9% of acid pretreated sample was digested at the same condition. The high digestibility of the sample was also influenced to the yields of monomeric sugars during enzymatic hydrolysis. In addition, drying process of pretreated samples affected detrimentally not only to digestibility but also to the yields of monomeric sugars.

Studies on the Microbial Decomposition of Cellulosic Materials - Part Ⅰ. Isolation of Cellulase-producing Microorganisms and Characterization of the Enzyme Activities - (섬유소분해(纖維素分解)의 미생물학적(微生物學的) 연구(硏究) - 제1보(第一報). 섬유소분해(纖維素分解) 미생물(微生物)의 분리(分離) 및 효소특성연구(醉素特性硏究) -)

  • Kim, Kyo-Chang;Kim, Chi-Kyung;Kim, Chang-Han
    • Applied Biological Chemistry
    • /
    • v.24 no.2
    • /
    • pp.85-93
    • /
    • 1981
  • For the utilization of natural cellulosic materials by microorganisms, a potent cellulase-producing microorganism was isolated and identified as Trichoderma spp. Rice straw used as a substrate in this study was preliminarily treated with chemical solvents and/or additionally treated with acids and by heat, and then examined with the cellulase produced by the organism. Better results in sugar production by decomposing the straw cellulose were obtained, when the cellulase was produced by cultivating the organism in the selection medium, pH 5.0, for 5 days, and when the pretreated straw substrate was additionally treated with 0.1% $H_2SO_4$ sulfuric acid at $120^{\circ}C$ for 1 hour. The enzyme production was increased by about 20%, when 0.5% urea 0.5% phosphate, 0.1% meat extract, or 5% orange peel was added into the culture medium. For the practical purposes, the sugar production from the rice straw by the cellulase-producing microorganism can be improved by extending the reaction time of the enzyme up to 24 hr or longer.

  • PDF

The Effect of Microwave Heating on the Mineralogical Phase Transformation of Pyrite and Fe Leaching (마이크로웨이브 가열이 황철석의 상변환과 Fe 용출에 미치는 효과)

  • You, Don-Sang;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.233-244
    • /
    • 2015
  • In order to study the phase transformation of pyrite and to determine the maximum Fe leaching factors, pyrite samples were an electric furnace and microwave oven and then ammonia leaching was carried out. The rim structure of hematite was observed in the sample exposed in an electric furnace, whereas a rim structure consisting of hematite and pyrrhotite were found in the microwave treated sample. Numerous interconnected cracks were only formed in the microwave treated sample due to the arcing effect, and these cracks were not found in the electric furnace treated sample. Under XRD analysis, pyrite and hematite were observed in the electric furnace treated sample, whereas pyrite, hematite and pyrrhotite were found in the microwave treated sample. The results of the pyrite sample leaching experiments showed that the Fe leaching was maximized with the particle size of -325 mesh, sulfuric acid of 2.0 M, ammonium sulfate of 1.0 M, and hydrogen peroxide of 1.0 M. The electric furnace and microwave treated samples were tested under the maximum leaching conditions, the Fe leaching rate was much greater in the microwave treated sample than in the electric furnace treated sample and the maximum Fe leaching time was also faster in the microwave treated sample than in the electric furnace treated sample. Accordingly, it is expected that the microwave heating can enhance (or improve) Fe leaching in industrial minerals as well as pyrite decomposition in gold ores.