• Title/Summary/Keyword: Sulfur-modified polymer

Search Result 12, Processing Time 0.022 seconds

Durability of concrete using sulfur-modified polymer (개질유황 폴리머를 사용한 콘크리트의 내구성 평가)

  • Hong, Chang Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.205-211
    • /
    • 2015
  • Most of the sulfur is obtained from desulfurization of natural gas and crude oil. In Korea, more than 120 tons of sulfur are produced by refinery, and about 50 % of the produced sulfur is used as a raw material for the production of fertilizer and sulfuric acid. Modified sulfur is manufactured from excessive sulfur that could be used to improve concrete properties, and this study evaluated concrete strength and durability that contains modified sulfur. Flexural and compressive strengths of concrete with sulfur modified polymer were comparable to those of OPC concrete with mixing water at similar temperatures, while the strengths increased a little as mixing water temperature increased. It was also confirmed that the resistance to freeze-thaw damage was more dependent on entrained air characteristics obtained by a proper use of air entraining agent than on the use of sulfur modified polymer. When concrete was immersed in 5 % sulfuric acid, the rate of reduction in compressive strength of OPC concrete was less than 1/4 of the strength reduction of concrete with sulfur modified polymer. Also, the resistance of concrete with sulfur modified polymer to scaling due to the use of de-icing salt was evaluated as Class 1, while that of OPC concrete was evaluated as Class 4, as aggregates were exposed. Accordingly, it is believed that sulfur modified polymer could be effectively used for bridge deck concrete since sulfur modified polymer improves the durability of concrete.

Properties of portland cement concrete with the addition of a modified sulfur polymer (개질 유황 고분자가 혼입된 포틀랜드 시멘트 콘크리트의 특성)

  • Yu, Seung-Gun;Choi, Heon-Jin;Kwon, Hyok;Park, No-Kyung;Kim, Goo-Dae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.4
    • /
    • pp.192-196
    • /
    • 2010
  • This paper describes the effects of modified sulfur polymer content on the compressive strength and chemical resistance of Portland cement concrete with and without the modified sulfur polymer. The Portland cement concrete which contained modified sulfur had much higher strength than the Portland cement concrete without modified sulfur, workability is stabled at $55^{\circ}C$. Alkali tolerance test was evaluated by immersing these concrete specimens in 13 % $CaCl_2$ solutions. In the alkali tolerance test, the resistance of Portland cement concrete with modified sulfur to $CaCl_2$ increased compared with Portland cement concrete without modified sulfur.

Laboratory Evaluation of the Properties of Sulfur Modified Asphalt Mixtures (황이 첨가된 개질 아스팔트 혼합물의 실내 물성 평가)

  • Yang Sung-Lin;Kim Boo-Il;Kim Nam-Ho;Rhee Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.163-172
    • /
    • 2006
  • This study evaluated the laboratory properties of asphalt binder and mixture modified with SPC(Sulfur Polymer Cement), which consists of sulfur as a main ingredient that is an industrial by-product made from refining process of crude oil and carbon-black as an additive. Four levels of SPC modifier ratios(0, 10, 30, 50%) were evaluated in the laboratory. Superpave(Superior Performing Asphalt Pavements) system was used to determine the PG(Performance Grade) and evaluate the property of SPC modified binder at the different temperatures. IDT(Indirect Tensile Test) was performed to evaluate the resistance of fatigue and low-temperature cracking at $10^{\circ}C\;and\;-10^{\circ}C$. Wheel-tracking test was also performed to evaluate the rutting-resistance of SPC modified asphalt mixtures. Test results showed that the more SPC modifier ratios, the better rutting-resistance and the more potential of low-temperature cracking resistance. However, SPC modifier did not show the effect on the fatigue cracking resistance.

  • PDF

A Study on the Lining of Reinforced Concrete Pipe Using Polymer-Modified Mortar (폴리머 시멘트 모르타르를 이용한 철근콘크리트 흄관 라이닝에 관한 연구)

  • 김영집;김한엽;조영구;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.333-338
    • /
    • 2000
  • At present, reinforced concrete pipe has been widely used as drain pipe. However, many reinforced concrete pipe is exposed at deteriorated environment by the growth of a sulfur-oxidizing bacterium isolated from corroded concrete. The purpose of this study is to evaluate the effects of lining by polymer-modified mortar on the development in durability of reinforced concrete pipe. Polymer-modified mortars ate prepared with various polymer typer as cement modifier and polymer-cement ratio and rested for compressive and flexural strengths, adhesion in tension, acid resistance test, freezing and thawing test, and lining test of product in the field. From the rest results, it is apparent that polymer-modified mortars have good mechanical properties and durability as lining material. In practice, all polymers can be used as lining materials for reinforced concrete pip, and type of polymer, and polymer-cement ratio and curing conditions are controlled for good lining product.

  • PDF

Studies on analysis of Rubber Vulcanizates by Pyrolysis-Gas Chromatography (II) (NBR, CR, and EPDM Vulcanizates) (Pyrolysis-Gas Chromatography를 이용한 가황 고무의 열분석에 관한 연구(II) (NBR, CR 및 EPDM 가황체))

  • Huh, D.S.;Kim, J.S.;Kim, K.J.;Ahn, B.K.;Suh, S.K.
    • Elastomers and Composites
    • /
    • v.22 no.4
    • /
    • pp.314-323
    • /
    • 1987
  • A blend ratio of rubber vulcanzates comprising NBR, CR, EPDM, NR, BR, and SBR alone or blended is determind through a P.G.C. It is found that a characteristic peak of elastomer is proportional to the content of each elastomer when they are pyrolysed. It is also classified to the different AN content in NBR vulcanizates, identification of sulfur-modified and non-sulfur bearing CR polymers, and the content of ethylene, propylene monomer and the third monomer in EPDM vulcanizetes.

  • PDF

Characteristics of the Warm-Mix Asphalt Mixtures Using the Modified Sulfur Binder (개질 유황결합재를 사용한 중온아스팔트 혼합물의 특성)

  • Kim, Se-Won;Park, Hung-Suck;Kim, Jong-Kyu;Jung, Yong-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.489-495
    • /
    • 2016
  • In this study, the Warm-Mix Asphalt was prepared using a modified Sulfur Binder mixed with an additive of a polymer component in sulfur, which is an industrial by-product generated in the crude oil refining process. The dynamic stability and durability characteristics of the prepared Warm-Mix Asphalt was evaluated by the indirect tensile strength, the tensile strength ratio before and after water immersion and freezing-thawing, and the dynamic stability by wheel tracking test. The Warm-Mix Asphalt Mixtures using Modified Sulfur Binder has a tensile strength ratio before and after water immersion of 0.88, which is about 1.13 times that of the Warm-Mix formed modified Asphalt, and the tensile strength ration before and after freezing-thawing is also 0.82, thus, all tensile strength ratios satisfied the KS quality standard value of 0.75 or more. The indirect tensile strength was 1.6MPa which was twice the KS quality standard value of 0.8MPa, and about 1.24 times higher than that of normal heated asphalt 1.29MPa. In addition, the dynamic stability by the wheel tracking test was 14,075 times/mm, which was about 15 times higher than that of normal heated asphalt and about 3 times higher than that of the Warm-Mix formed modified Asphalt, showing excellent resistance to plastic deformation such as fatigue cracks.

Lining of Reinforced Spun Concrete Pipes using Polymer-Modified Mortars (폴리머 시멘트 모르타르를 이용한 원심력 철근콘크리트관의 라이닝)

  • 조영국
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.406-413
    • /
    • 2001
  • Up to this day, reinforced spun concrete pipes have been widely used as drain pipes. However, many reinforced spun concrete pipes are exposed to the deteriorated environment such as freezing-thawing damage and chemical attack by the growth of a sulfur-oxidizing bacterium isolated from corroded concrete. The purpose of this study is to evaluate the effects of lining by polymer-modified mortar using polymer dispersions as cement modifier on the development in durability of reinforced spun concrete pipe. The polymer-modified mortars were prepared with various polymer types and polymer-cement ratios, and tested for compressive and flexural strengths, acid, freezing-thawing, and heat resistances. And then, the reinforced spun concrete pipe product lined by polymer-modified mortars was tested for adhesion in tension and surface conditions according to curing temperatures in the field. From the test results, it is apparent that the polymer-modified mortars have good mechanical properties and durability as a lining material. In practice, all polymers can be used as lining the materials for reinforced spun concrete pipe, and types of polymer, and polymer-cement ratio and curing conditions are controlled for a good lining product.

Optimization of Cure System for the ESBR Silica WMB and BR Silica DMB Blend Compounds

  • Yu, Eunho;Kim, Woong;Ryu, Gyeongchan;Ahn, Byungkyu;Mun, Hyunsung;Hwang, Kiwon;Kim, Donghyuk;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.97-104
    • /
    • 2019
  • Emulsion styrene-butadiene rubber silica wet masterbatch (ESBR silica WMB) technology was studied to develop highly filled and highly dispersed silica compounds, involving the preparation of a composite by co-coagulating the modified silica and the rubber latex in a liquid phase. Previous studies have shown that when manufacturing ESBR silica WMB/Butadiene silica dry masterbatch (BR silica DMB) blend compounds, preparing BR silica dry masterbatch and mixing it with ESBR silica WMB gave excellent results. However, WMB still has the problem of lower crosslink density due to residual surfactants. Therefore, in this study, tetrabenzylthiuram disulfide (TBzTD) was added instead of diphenyl guanidine (DPG) in the ESBR silica WMB/BR silica DMB blend compounds and sulfur/CBS contents were increased to evaluate their cure characteristics, crosslink densities, mechanical properties, and dynamic viscoelastic properties. TBzTD was found to be more effective in increasing the crosslink density and to produce superior properties compared to DPG. In addition, with increasing sulfur/CBS contents, mechanical properties and rolling resistance were enhanced due to high crosslink density, but the abrasion resistance was not significantly changed because of the toughness.

Non-isothermal TGA Analysis on Thermal Degradation Kinetics of Modified-NR Rubber Composites (비등온 TGA에 의한 개질NR고무복합재료지 열분해 Kinetics에 관한 해석)

  • Oh, Jeong-Seok;Lee, Joon-Mann;Ahn, Won-Sool
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.435-440
    • /
    • 2009
  • Thermal degradation behavior of CR (chloroprene) -modified NR (natural rubber) compounds, having different sulfur/accelerator compositions, was studied by non-isothermal TGA method. Data were analyzed using both Kissinger and Flynn-Wall-Ozawa analysis to assess the activation energies. Activation energy obtained from Kissinger analysis was $147.0{\pm}2.0$ kJ/mol for all samples, showing little effect of sulfur/accelerator composition changes in the samples. On the other hand, activation energy from Flynn-Wall-Ozawa analysis exhibited much variations with conversion, showing average value of $211.6{\pm}19.0$ kJ/mol. From the results, it was considered that whole thermal degradation processes of the samples were composed of complex multiple step processes, of which reaction mechanisms were different from each other.