• Title/Summary/Keyword: Sulfur Particles

Search Result 95, Processing Time 0.023 seconds

Study on characteristics of board prepared by microwave drying process of coal bottom ash and vermiculite (바텀애쉬를 이용한 흡음 내장재 개발에 관한 연구)

  • Jun, Hyun Chul;Kim, Geug Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.135-142
    • /
    • 2017
  • In this study, we prepared the board of vermiculite materials utilizing coal bottom ash from the Western thermal power stations in Korea and obtained experimental data in applications for building interior materials with the characteristics of sound absorption. To produce the mixture materials of vermiculite and coal bottom ash, we used a microwave drying process. In addition, a ball milling process was used to produce particles of coal bottom ash with a uniform size of $65{\mu}m$. When the board made from mixture materials of vermiculite and coal bottom ash were produced with bottom ash sulfur concentrations of 5, 10 wt%, maximum bending loads were analyzed. These experimental results would contribute much to fundamental data essential to the recycling technology of coal bottom ash.

Direction for the management of air pollutants based on health risk in Korea (위해성을 고려한 대기오염물질의 관리 방향)

  • Kim, Young Ju;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.43-52
    • /
    • 2017
  • Policy direction for the management of air quality in Korea has been on the reduction of the average concentrations of the criteria air pollutants such as sulfur dioxide and fine particles. However, recently, risk based management of air pollutants becomes an important issue. In this study, to develop an effective air quality management policy direction in Korea, (1) the fourth Multiple Air Toxics Exposure Study (MATES IV) carried out in the South Coast Air Quality Management District (SQAQMD) in the USA is reviewed and (2) the results are compared with in these in Seoul and (3) policy directions are suggested. It was found that (1) systematic integrated study comprising of measurement, modeling, emission inventory estimation, and risk assessment was essential to estimate the health risk of air pollutants reliably, (2) cancer risk of diesel particle was dominant over other air pollutants, and (3) health risk based emissions were different from amount based emissions. It was suggested that (1) reducing the exposure from hot spots might important to reduce health risk from air pollutants and (2) an integrated air quality management administration system is important for the efficient management of air pollution.

Accelerated Prediction Methodologies to Predict the Outdoor Exposure Lifespan of Galvannealed Steel

  • Kim, Ki Tae;Yoo, Young Ran;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.86-91
    • /
    • 2019
  • Generally, atmospheric corrosion is the electrochemical degradation of metal that can be caused by various corrosion factors of atmospheric components and weather, as well as air pollutants. Specifically, moisture and particles of sea salt and sulfur dioxide are major factors in atmospheric corrosion. Using galvanized steel is one of the most efficient ways to protect iron from corrosion by zinc plating on the surface of the iron. Galvanized steel is widely used in automobiles, building structures, roofing, and other industrial structures due to their high corrosion resistance relative to iron. The atmospheric corrosion of galvanized steel shows complex corrosion behavior, depending on the plating, coating thickness, atmospheric environment, and air pollutants. In addition, corrosion products are produced in different types of environments. The lifespans of galvanized steels may vary depending on the use environment. Therefore, this study investigated the corrosion behavior of galvannealed steel under atmospheric corrosion in two locations in Korea, and the lifespan prediction of galvannealed steel in rural and coastal environments was conducted by means of the potentiostatic dissolution test and the chemical cyclic corrosion test.

Property Analysis of Natural Brucite and Its Application as Sulfur Dioxide Absorbent (천연 Brucite의 물성분석 및 이산화황 흡수제로의 응용)

  • Kang, Seong-Gu;Kim, Myoung-Hwan;Kim, Jin-Bae
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.239-244
    • /
    • 2009
  • $Mg(OH)_2$ slurry was prepared by using natural mineral brucite mined in Liaoning province in China, and its de-$SO_x$ efficiency was compared with that of $Mg(OH)_2$ slurry prepared by thermal decomposition and hydration of magnesite. The physical and chemical characteristics of $Mg(OH)_2$ Powders prepared from brucite and magnesite were similar. However, the layered plate structure of $Mg(OH)_2$ crystal particles prepared from brucite had grown more stably. The desulfurization efficiency of $Mg(OH)_2$ slurry prepared from brucite was slightly higher than that of magnesite. Brucite may be used as a new absorbent for the desulfurization of flue gas in the future.

A study on the air pollutant emission trends in Gwangju (광주시 대기오염물질 배출량 변화추이에 관한 연구)

  • Seo, Gwang-Yeob;Shin, Dae-Yewn
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.4
    • /
    • pp.1-26
    • /
    • 2009
  • We conclude the following with air pollution data measured from city measurement net administered and managed in Gwangju for the last 7 years from January in 2001 to December in 2007. In addition, some major statistics governed by Gwangju city and data administered by Gwangju as national official statistics obtained by estimating the amount of national air pollutant emission from National Institute of Environmental Research were used. The results are as follows ; 1. The distribution by main managements of air emission factory is the following ; Gwangju City Hall(67.8%) > Gwangsan District Office(13.6%) > Buk District Office(9.8%) > Seo District Office(5.5%) > Nam District Office(3.0%) > Dong District Office(0.3%) and the distribution by districts of air emission factory ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%). That by types(Year 2004~2007 average) is also following ; Type 5(45.2%) > Type 4(40.7%) > Type 3(8.6%) > Type 2(3.2%) > Type 1(2.2%) and the most of them are small size of factory, Type 4 and 5. 2. The distribution by districts of the number of car registrations is the following ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%) and the distribution by use of car fuel in 2001 ; Gasoline(56.3%) > Diesel(30.3%) > LPG(13.4%) > etc.(0.2%). In 2007, there was no ranking change ; Gasoline(47.8%) > Diesel(35.6%) > LPG(16.2%) >etc.(0.4%). The number of gasoline cars increased slightly, but that of diesel and LPG cars increased remarkably. 3. The distribution by items of the amount of air pollutant emission in Gwangju is the following; CO(36.7%) > NOx(32.7%) > VOC(26.7%) > SOx(2.3%) > PM-10(1.5%). The amount of CO and NOx, which are generally generated from cars, is very large percentage among them. 4. The distribution by mean of air pollutant emission(SOx, NOx, CO, VOC, PM-10) of each county for 5 years(2001~2005) is the following ; Buk District(31.0%) > Gwangsan District(28.2%) > Seo District(20.4%) > Nam District(12.5%) > Dong District(7.9%). The amount of air pollutant emission in Buk District, which has the most population, car registrations, and air pollutant emission businesses, was the highest. On the other hand, that of air pollutant emission in Dong District, which has the least population, car registrations, and air pollutant emission businesses, was the least. 5. The average rates of SOx for 5 years(2001~2005) in Gwangju is the following ; Non industrial combustion(59.5%) > Combustion in manufacturing industry(20.4%) > Road transportation(11.4%) > Non-road transportation(3.8%) > Waste disposal(3.7%) > Production process(1.1%). And the distribution of average amount of SOx emission of each county is shown as Gwangsan District(33.3%) > Buk District(28.0%) > Seo District(19.3%) > Nam District(10.2%) > Dong District(9.1%). 6. The distribution of the amount of NOx emission in Gwangju is shown as Road transportation(59.1%) > Non-road transportation(18.9%) > Non industrial combustion(13.3%) > Combustion in manufacturing industry(6.9%) > Waste disposal(1.6%) > Production process(0.1%). And the distribution of the amount of NOx emission from each county is the following ; Buk District(30.7%) > Gwangsan District(28.8%) > Seo District(20.5%) > Nam District(12.2%) > Dong District(7.8%). 7. The distribution of the amount of carbon monoxide emission in Gwangju is shown as Road transportation(82.0%) > Non industrial combustion(10.6%) > Non-road transportation(5.4%) > Combustion in manufacturing industry(1.7%) > Waste disposal(0.3%). And the distribution of the amount of carbon monoxide emission from each county is the following ; Buk District(33.0%) > Seo District(22.3%) > Gwangsan District(21.3%) > Nam District(14.3%) > Dong District(9.1%). 8. The distribution of the amount of Volatile Organic Compound emission in Gwangju is shown as Solvent utilization(69.5%) > Road transportation(19.8%) > Energy storage & transport(4.4%) > Non-road transportation(2.8%) > Waste disposal(2.4%) > Non industrial combustion(0.5%) > Production process(0.4%) > Combustion in manufacturing industry(0.3%). And the distribution of the amount of Volatile Organic Compound emission from each county is the following ; Gwangsan District(36.8%) > Buk District(28.7%) > Seo District(17.8%) > Nam District(10.4%) > Dong District(6.3%). 9. The distribution of the amount of minute dust emission in Gwangju is shown as Road transportation(76.7%) > Non-road transportation(16.3%) > Non industrial combustion(6.1%) > Combustion in manufacturing industry(0.7%) > Waste disposal(0.2%) > Production process(0.1%). And the distribution of the amount of minute dust emission from each county is the following ; Buk District(32.8%) > Gwangsan District(26.0%) > Seo District(19.5%) > Nam District(13.2%) > Dong District(8.5%). 10. According to the major source of emission of each items, that of oxides of sulfur is Non industrial combustion, heating of residence, business and agriculture and stockbreeding. And that of NOx, carbon monoxide, minute dust is Road transportation, emission of cars and two-wheeled vehicles. Also, that of VOC is Solvent utilization emission facilities due to Solvent utilization. 11. The concentration of sulfurous acid gas has been 0.004ppm since 2001 and there has not been no concentration change year by year. It is considered that the use of sulfurous acid gas is now reaching to the stabilization stage. This is found by the facts that the use of fuel is steadily changing from solid or liquid fuel to low sulfur liquid fuel containing very little amount of sulfur element or gas, so that nearly no change in concentration has been shown regularly. 12. Concerning changes of the concentration of throughout time, the concentration of NO has been shown relatively higher than that of $NO_2$ between 6AM~1PM and the concentration of $NO_2$ higher during the other time. The concentration of NOx(NO, $NO_2$) has been relatively high during weekday evenings. This result shows that there is correlation between the concentration of NOx and car traffics as we can see the Road transportation which accounts for 59.1% among the amount of NOx emission. 13. 49.1~61.2% of PM-10 shows PM-2.5 concerning the relationship between PM-10 and PM-2.5 and PM-2.5 among dust accounts for 45.4%~44.5% of PM-10 during March and April which is the lowest rates. This proves that particles of yellow sand that are bigger than the size $2.5\;{\mu}m$ are sent more than those that are smaller from China. This result shows that particles smaller than $2.5\;{\mu}m$ among dust exist much during July~August and December~January and 76.7% of minute dust is proved to be road transportation in Gwangju.

Analysis of a Sulfur-oxidizing Perchlorate-degrading Microbial Community (황 산화를 통해 퍼클로레이트를 분해하는 미생물 군집 분석)

  • Kim, Young-Hwa;Han, Kyoung-Rim;Hwang, Heejae;Kwon, Hyukjun;Kim, Yerim;Kim, Kwonwoo;Kim, Heejoo;Son, Myunghwa;Choi, Young-Ik;Sung, Nak-Chang;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.68-74
    • /
    • 2016
  • Perchlorate (ClO4) is an emerging pollutant detected in surface water, soil, and groundwater. Previous studies provided experimental evidence of autotrophic ClO4 removal with elemental sulfur (S0) particles and activated sludge, which are inexpensive and easily available, respectively. In addition, ClO4 removal efficiency was shown to increase when an enrichment culture was used as an inoculum instead of activated sludge. PCR-DGGE was employed in the present study to investigate the microbial community in the enrichment culture that removed ClO4 autotrophically. Microorganisms in the enrichment culture showed 99.71% or more ClO4 removal efficiency after a 7-day incubation when the initial concentration was approximately 120 mg ClO4/l. Genomic DNA was isolated from the enriched culture and its inoculum (activated sludge), and used for PCR-DGGE analysis of 16S rRNA genes. Microbial compositions of the enrichment culture and the activated sludge were different, as determined by their different DGGE profiles. The difference in DGGE banding patterns suggests that environmental conditions of the enrichment culture caused a change in the microbial community composition of the inoculated activated sludge. Dominant DGGE bands in the enrichment culture sample were affiliated with the classes β-Proteobacteria, Bacteroidetes, and Spirochaetes. Further investigation is warranted to reveal the metabolic roles of the dominant populations in the ClO4 degradation process, along with their isolation.

Study on Calcination Characteristics of Limestones for In-Furnace Desulfurization in Oxy-Fuel Combustion (순산소연소 조건에서 석회석의 소성특성 및 로내탈황에 관한 연구)

  • An, Young-Mo;Jo, Hang-Dae;Choi, Won-kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.371-377
    • /
    • 2009
  • In oxy-fuel combustion, $CO_2$ concentration in the flue gas may be enriched up to 95% owing to the gas recirculation. Under the high $CO_2$ concentration, the calcination characteristic of limestone is different from that of the conventional air combustion system. In this study, three types of limestone taken from different regions in Korea were used as $SO_2$ absorbent and their calcination characteristics depending on calcination temperature were investigated. The experiments were performed to examine the effects of operating variables such as absorbent species, reaction temperatures on the $SO_2$ removal efficiency and reacted limestone particles were captured to examine the sulfur contents. The degree of calcination and the specific surface area increased with calcination temperature and $SO_2$ removal efficiency increased with reaction temperature. The results showed remarkable difference in $SO_2$ removal efficiencies between the limestone types. The sulfur content of the reacted limestone with the highest $SO_2$ removal efficiency was about 10%.

Physical Properties of the Silica-Reinforced Tire Tread Compounds by the Increased Amount of Vulcanization Agents (가교제 증량이 트레드용 실리카 컴파운드의 물성에 미치는 영향)

  • Seo, Byeongho;Kim, Ki-Hyun;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.201-208
    • /
    • 2013
  • In this study, effect of different amounts of sulfur and vulcanization accelerators in the acrylonitrile styrene-butadiene rubber (AN-SBR)/silica compounds on the properties of tire tread compound were studied. As a result, cure rate and degree of cross-linking of the compounds were increased due to enhanced cross-linking reactivity by the increased amounts of sulfur and vulcanization accelerators. Also, abrasion resistance and the mechanical properties such as hardness and modulus of the compounds were improved by enhanced degree of cross-linking of the compounds. For the dynamic properties, tan ${\delta}$ value at $0^{\circ}C$ was increased due to the increase of glass transition temperature ($T_g$) by enhanced degree of cross-linking of the compound, and tan ${\delta}$ value at $60^{\circ}C$ was decreased. Initial cure time ($t_1$) showed the linear relationship with tan ${\delta}$ value at $60^{\circ}C$. This result is attributed that reduced initial cure time ($t_1$) of compounds by applying increased amount of curatives can form cross-linking in early stage of vulcanization that may suppress development of filler network. This result is verified by observation on the surface of annealed compounds using AFM (atomic force microscopy). Consequently, decreased initial cure time is considered a very important parameter to reduce tan ${\delta}$ at $60^{\circ}C$ through reduced re-agglomeration of silica particles.

Preparation of Zinc Oxide Thin Film by CFR Method and its Electrical Property for Detection of Sulfur Compounds (CFR 법에 의한 산화아연 박막의 제조 및 황 화합물 검출을 위한 전기적 특성)

  • Lee, Sun Yi;Park, No-Kuk;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.218-223
    • /
    • 2010
  • The zinc oxide thin film, which can be applied as the gas sensor of a semiconductor type, was grown on the silicon substrate by CFR(continuous flow reaction) method in this study. The growth property and the electrical property of the zinc oxide thin films synthesized by CFR method were also investigated. Zinc acetate solutions of 0.005~0.02 M were used as the precursor for the preparation of zinc oxide thin films. The size of ZnO particles consisted on the zinc oxide thin film increased not only with increasing concentration of precursor, but also the thickness of thin film increased. The growth rate of zinc oxide thin film by CFR method was proportionably depend on the concentration of precursor and the uniform ZnO thin film was prepared when zinc acetate of 0.01 M is used as the precursor. The charged currents on the zinc oxide thin films were obtained as its electrical property by I-V meter, and increased agree with increasing the thickness of zinc oxide thin film. Thus, it was concluded that the charged current on the zinc oxide thin film can be controlled with changing concentration of precursor solution in CFR method. The charged currents on the zinc oxide thin films also decreased when ZnO thin film is exposed under hydrogen sulfide of 500 ppmv at $300^{\circ}C$ for 5 min. From these results, it could be confirmed that the zinc oxide thin film prepared by CFR method can be used for the detection of sulfur compounds.

Effect of Operating Parameters on Microbial Desulfurization of Coal by Acidithiobacillus ferrooxidans. (Acidithiobacillus ferrooxidans에 의한 생물학적 석탄탈황에 미치는 조업인자의 영향)

    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.400-407
    • /
    • 2003
  • In microbial coal desulfurization process (MCDP) by using Acidithiobacillus ferrooxidans, the effect of process variables on pyritic sulfur removal efficiency has been investigated. The inhibitory effect of toxic materials contained in coal matrix on the activity of desulfurizing bacteria have been evaluated in coal extracts, and the results showed that the method was useful to evaluate the applicability of a coal which is to be desulfurization to MCDP. The removal efficiency increased with decreasing particle size and decreases with increasing pulp density, but has no significant influence of particle size and pup densities at high pulp densities over 20 wt%. The mass transfers of gaseous nutrients such as oxygen and carbon dioxide into coal slurry with various pulp densities and coal particle size has been studied in an airlift bioreactor. Mass transfer coefficient was independent of pulp density in coal slurry with fine particle below 175 $\mu\textrm{m}$, but significantly decreased with increasing pulp density over 225 $\mu\textrm{m}$. The coal particles over 575 $\mu\textrm{m}$ were significantly settled to the bottom of bioreactor resulting in poor mixing. Considering mass transfer, pulp density and coal mixing, an optimal size of coal particle for the microbial coal desulfurization process seems to be about 500 $\mu\textrm{m}$.