• 제목/요약/키워드: Sulfoximine

검색결과 49건 처리시간 0.023초

Oxidative DNA Damage in Rats with Diabetes Induced by Alloxan and Streptozotocin

  • Lee, Young-Jin;Park, Young-Mee;Choi, Eun-Mi
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.161-167
    • /
    • 1999
  • The role of oxidative stress in the initiation and the complication of diabetes was examined by monitoring blood glucose increase and oxidative DNA damage in rats treated with alloxan or streptozotocin (STZ). Oxidative DNA damage was assessed by quantitating 8-oxo-2'-deoxyguanosine ($oxo^8dG)$ excreted in urine and the $oxo^8dG$ accumulated in pancreas DNA. Both alloxan and STZ treatments resulted in an abrupt increase in blood glucose and significant increases in urinary and pancreatic $oxo^8dG$. Pretreatment of buthionine sulfoximine (BSO), a glutathione-depleting agent, slightly potentiated the increase of blood glucose and urinary $oxo^8dG$ in the alloxan- and STZ-treated rats. Furthermore, the BSO pretreatment caused significant amplification of pancreatic $oxo^8dG$ increase in the rats. On the other hand, pretreatment with 1,10- phenanthroline (o-phen), a chelator of divalent cations, showed different results between alloxan- and STZ-treated rats. The o-phen pretreatment completely blocked diabetes and the increase of $oxo^8dG$ by alloxan treatment, while it potentiated the increase of blood glucose and $oxo^8dG$ by STZ treatment. The results demonstrate that the causative effect of alloxan on diabetes may be the generation of reactive oxygen species through a Fenton type reaction, but that of STZ may not.

  • PDF

Effect of Depletion and Oxidation of Cellular GSH on Cytotoxicity of Mitomycin Small Cell Lung Cancer Cells

  • Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • 제12권2호
    • /
    • pp.92-100
    • /
    • 2004
  • Effect of the depletion or oxidation of GSH on mitomycin c (MMC)-induced mitochondrial damage and cell death was assessed in small cell lung cancer (SCLC) cells. MMC induced cell death and the decrease in the GSH contents in SCLC cells, which were inhibited by z-LEHD.fmk (a cell permeable inhibitor of caspase-9), z-DQMD.fmk (a cell permeable inhibitor of caspase-3) and thiol compound, N-acetylcysteine. MMC caused nuclear damage, release of cytochrome c and activation of caspase-3, which were reduced by N-acetylcysteine. The depletion of GSH due to L-butionine-sulfoximine enhanced the MMC-induced cell death and formation of reactive oxygen species in SCLC cells, whereas the oxidation of GSH due to diamide or $NH_2Cl$ did not affect cytotoxicity of MMC. The results show that MMC may cause cell death in SCLC cells by inducing mitochondrial dysfunction, leading to activation of caspase-9 and -3. The MMC-induced change in the mitochondrial membrane permeability, followed by cell death, in SCLC cells may be significantly enhanced by the depletion of GSH. In contrast, the oxidation of GSH may not affect cytotoxicity of MMC.

광호흡 과정에서 생성된 Glutamate가 광합성 탄소대사에 미치는 영향 (Effects of Gultamate Synthesized during Photorespiration on Photosynthetic Carbon Metabolism)

  • 이인철
    • Journal of Plant Biology
    • /
    • 제31권4호
    • /
    • pp.277-288
    • /
    • 1988
  • The effects of ammonium ion and glutamate on CO2 fixation abilities and related carbon metabolism were investigated in pea (Pisum sativum L. cv. Sparkle) leaf discs under conditions favoring photorespiration (21% O2, 0.03% CO2) and nonphotorespiration (5% O2, 0.03% CO2). A concentration of more than 10 mM of NH4+ decreased the photosynthetic CO2 fixation and those inhibitory effects were more remarkable in 21% O2 than in 5% O2 conditions. The effect of glutamate on CO2 fixation was found to be independent of the O2 level, as glutamate increased the CO2 fixation under both 21% and 5% O2 conditions. L-methionine-dl-sulfoximine, an irreversible inhibitor of glutamate synthetase, however, inhibited the CO2 fixation markedly under 21% O2, but did not affect it under 5% O2 conditions. The treatment with NH4+ elevated the relative amounts of 14C incorporated into soluble components from 14CO2 with no relation to O2 levels, while glutamate increased 14C into insoluble components and neutral sugars. Glutamate, especially, seemed to stmulate the biosynthesis of starch under 5% O2 condition. These results indicated that NH4+ stimulated the degradation of sugar or starch and this proposal was confirmed by the increasing of pyruvate kinase activity in leaf discs treated with ammonium ion.

  • PDF

Up-Regulation of Glutathione Biosynthesis in NIH3T3 Cells Transformed with the ETV6-NTRK3 Gene Fusion

  • Kim, Su-Jung;Kim, Hong-Gyum;Lim, Hye-Won;Park, Eun-Hee;Lim, Chang-Jin
    • Molecules and Cells
    • /
    • 제19권1호
    • /
    • pp.131-136
    • /
    • 2005
  • The ETV6-NTRK3 gene fusion, first identified in the chromosomal translocation in congenital fibrosarcoma, encodes a chimeric protein tyrosine kinase with potent transforming activity. ETV6-NTRK3-dependent transformation involves the joint action of NTRK3 signaling pathways, and aberrant cell cycle progression resulting from activation of Mek1 and Akt. The level of glutathione (GSH) was found to be markedly increased in ETV6-NTRK3-transformed NIH3T3 cells. The activities of the two GSH biosynthetic enzymes as well as of glutathione peroxidase, together with their mRNAs, were also higher in the transformed cells. The transformed cells were able to grow in the presence of GSH-depleting agents, whereas the control cells were not. L-Buthionine-(S,R)-sulfoximine (BSO) inhibited activation of Mek1 and Akt in the transformed NIH3T3 cells. These observations imply that up-regulation of GSH biosynthesis plays a central role in ETV6-NTRK3-induced transformation.

Cytokinin and Nitrogen-Mediated Gene Regulation for $C_4$ Photosynthesis

  • Sugiyama, Tatsuo;Takei, Kentaroch;Deji, Atsushi;Tanguichi, Mitsutaka;Sakakibara, Hitoshi
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1996년도 식물학심포지움 식물호르몬과 신호전달
    • /
    • pp.50-63
    • /
    • 1996
  • Nitrogen (N) is an important regulator of the expression of genes involved in carbon and N assimilation pathways in plants by selectively altering the levels of proteins and/or mRNAs. These in C4 plants include genes for such as phosphoenolpyruvate carboxylase, carbonic anhydrase, and pyruvate-Pi dikinase. The C4 genes are regulated in mesophyll cells by N availability both transcriptionally and posttranscriptionally through cytokinins and glutamine as signals. The level of both the signals is up-regulated by N availability: cytokinins in roots and glutamine in leaves. The level of glutamine is controlled by the differential expression by N of glutamine synthetase and ferrdoxin-dependent glutamate synthase genes which locate in the mesophyll cells of C4 plants. The results is discussed as molecular mechanism for the greater N use efficiency of the plants as well as N partitioning is the photosynthetic cells.

  • PDF

Effects of Oxidative Stress on the Expression of Aldose Reductase in Vascular Smooth Muscle Cells

  • Kim, Hyo-Jung;Chang, Ki-Churl;Seo, Han-Geuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권3호
    • /
    • pp.271-278
    • /
    • 2001
  • Oxidative stress and methylglyoxal (MG), a reactive dicarbonyl metabolites produced by enzymatic and non-enzymatic reaction of normal metabolism, induced aldose reductase (AR) expression in rat aortic smooth muscle cells (SMC). AR expression was induced in a time-dependent manner and reached at a maximum of 4.5-fold in 12 h of MG treatment. This effect of MG was completely abolished by cyclohemide and actinomycin D treatment suggesting AR was synthesized by de novo pathway. Pretreatment of the SMC with N-acetyl-L-cysteine significantly down-regulated the MG-induced AR mRNA. Furthermore, DL-Buthionine-(S,R)-sulfoximine, a reagent which depletes intracellular glutathione levels, increased the levels of MG-induced AR mRNA. These results indicated that MG induces AR mRNA by increasing the intracellular peroxide levels. Aminoguanidine, a scanvenger of dicarbonyl, significantly down-regulated the MG-induced AR mRNA. In addition, the inhibition of AR activities with statil, an AR inhibitor, enhanced the cytotoxic effect of MG on SMC under normal glucose, suggesting a protective role of AR against MG-induced cell damages. These results imply that the induction of AR by MG may contribute to an important cellular detoxification of reactive aldehyde compounds generated under oxidative stress in extrahepatic tissues.

  • PDF

Evidence for the association of peroxidases with the antioxidant effect of p-coumaric acid in endothelial cells exposed to high glucose plus arachidonic acid

  • Lee, Seung-Jin;Mun, Gyeong-In;An, Sang-Mi;Boo, Yong-Chool
    • BMB Reports
    • /
    • 제42권9호
    • /
    • pp.561-567
    • /
    • 2009
  • Although many plant-derived phenolic compounds display antioxidant effects in biological systems, their mechanism of action remains controversial. In this study, the mechanism by which p-coumaric acid (p-CA) performs its antioxidant action was investigated in bovine aortic endothelial cells under oxidative stress due to high levels of glucose (HG) and arachidonic acid (AA), a free fatty acid. p-CA prevented lipid peroxidation and cell death due to HG+AA without affecting the production of reactive oxygen species. The antioxidant effect of p-CA was not decreased by buthionine-(S,R)-sulfoximine, an inhibitor of cellular GSH synthesis. In contrast, pretreatment with p-CA caused the induction of peroxidases that decomposed t-butyl hydroperoxide in a p-CA-dependent manner. Furthermore, the antioxidant effect of p-CA was significantly mitigated by methimazole, which was shown to inhibit the catalytic activity of 'p-CA peroxidases' in vitro. Therefore, it is suggested that the induction of these previously unidentified 'p-CA peroxidases' is responsible for the antioxidant effect of p-CA.

자유라디칼이 백서의 뇌별아교세포에 미치는 독성작용 (Cytotoxic Effect of Free Radical on Rat Primary Astrocytes)

  • 장혁;김명선;박현영;김요식;조광호;정헌택;박래길
    • Toxicological Research
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2000
  • Astrocytes generate free radicals including nitric oxide (NO) and reactive oxygen intermediates(ROI) which in turn play roles in the pathogenesis of degenerative diseases and sclerotic changes of the brain. This study was designed to evaluate the mechanism that free radicals contribute to the cytotoxicty of rat neonatal primary astrocytes. Treatment with NO donors alone including soldium nitroprusside(SNP), S-nitrosoglucathinoe (GSNO), and S-nitroso-n-acetylpenicillamine (SNAP) showed a little effect on the death of rat neonatal primary astrocytes, whereas SNP markedly induced the death of RAW 264.7 cells. ROI inculding H2O2 and O2 donor also slightly induced the death of rat primary astrocytes. However, 3-morpholinosydnonimine(SIN-1), a donor of peroxynitrite (ONOO), which is a reactive compound of NO with superoxide, significantly decreased the viability of rat primary astrocytes in a dose-dependent manner. Cells were retarded in outgrowth of viability of cellular processes with cell shrinkage and detachment from culture dishes. Hoechst staining demonstrated that SIN-1-induced cell death might be due to an apoptosis which was characterized by nuclear condensation and fragmentation. SIN-1-induced apoptosis was prevented by the pretreatment with superoxide dismutase (SOD) and catalase in rat primary astorocytes. Furthermore, prevention of the generation of reduced glutathione (GSH) by DL-buthionine-[S, R]-sulfoximine (BSO) aggravated the cytotoxic effects of SNP, benzene triol, and SIN-1 in rat primary astrocytes. Taken together, it is suggested that peroxynitrite may be a major effector of apoptosis and cellular antioxidant system is important for cell survival in rat prima교 astrocytes.

  • PDF

6-Hydroxydopamine-induced Adaptive Increase in GSH Is Dependent on Reactive Oxygen Species and Ca2+ but not on Extracellular Signal-regulated Kinase in SK-N-SH Human Neuroblastoma Cells

  • JIN Da-Qing;Park Byung CHUL;KIM Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • 제13권4호
    • /
    • pp.256-262
    • /
    • 2005
  • We examined the signaling molecules involved in the 6-hydroxydopamine (6-OHDA)-induced neuronal cell death and increase in cellular glutathione (GSH) level in SK-N-SH cells. The 6-OH-DA-induced cell death was significantly prevented by the pretreatment with N-acetylcysteine (NAC), a thiol antioxidant, and BAPTA, an intracellular $Ca^{2+}$ chelator. Although 6-OHDA induced ERK phosphorylation, the pretreatment with PD98059, an ERK inhibitor, did not block 6-OHDA-induced cell death. In addition, the 6-OHDA-induced activation of caspase-3, a key signal for apoptosis, was blocked by the pretreatment with NAC and BAPTA. While the level of reactive oxygen species (ROS) was significantly increased in the 6-OHDA-treated cells, the cellular GSH level was not altered for the first 6-hr exposure to 6-OHDA, but after then, the level was significantly increased, which was also blocked by the pretreatment with NAC and BAPTA, but not by PD98059. Depletion of GSH by pretreating the cells with DL-buthionine-(S,R)-sulfoximine (BSO), a glutathione synthesis inhibitor, rather significantly potentiated the 6-OHDA-induced death. In contrast to the pretreatment with NAC, 6-OHDA-induced cell death was not prevented by the post-treatment with NAC 30 min after 6-OHDA treatment. The results indicate that the GSH level which is increased adaptively by the 6-OHDA-induced ROS and intracellular $Ca^{2+}$ is not enough to overcome the death signal mediated through ROS-$Ca^{2+}$ -caspase pathway.

Transcriptional Regulation of the Gene Encoding ${\gamma}$-Glutamylcysteine Synthetase from the Fission Yeast Schizosaccharomyces pombe

  • Kim, Su-Jung;Kim, Hong-Gyum;Kim, Byung-Chul;Kim, Kyunghoon;Park, Eun-Hee;Lim, Chang-Jin
    • Journal of Microbiology
    • /
    • 제42권3호
    • /
    • pp.233-238
    • /
    • 2004
  • Transcriptional regulation of the Schizosaccharomyces pombe y-glutamylcysteine synthetase (GCS) gene was examined using the two GCS-lacZ fusion plasmids pUGCS101 and pUGCS102, which harbor 607 bp and 447 bp upstream regions, respectively. The negatively-acting sequence was located in the -607 - -447 bp upstream region of the GCS gene. The upstream sequence responsible for induction by menadione(MD) and L-buthionine-(S, R)-sulfoximine (BSO) resides in the -607 - -447 bp region, whereas the sequence which codes for nitric oxide induction is located within the -447 bp region, measured from the translational initiation point. Carbon source-dependent regulation of the GCS gene appeared to be dependent on the nucleotide sequence within -447 bp region. The transcription factor Papl is involved in the induction of the GCS gene by MD and BSO, but not by nitric oxide. Induction of the GCS gene occurring due to low glucose concentration does not depend on the presence of Pap1. These data imply that induction by MD and BSO may be mediated by the Pap1 binding site, probably located in the -607 - -447 region, and also that the nitric oxide-mediated regulation of the S. pombe GCS gene may share a similar mechanism with its carbon-dependent induction.