• 제목/요약/키워드: Sulfoxides

검색결과 33건 처리시간 0.024초

Raction of Thexylbromoborane-Methyl Sulfide in Methylene Chloride with Selected Organic Compounds Containing Representative Functional Groups$^\dag$

  • Cha, Jin-Soon;Kim, Jin-Euog;Oh, Se-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권4호
    • /
    • pp.313-318
    • /
    • 1987
  • The approximate rate and stoichiometry of the reaction of excess Thexylbromoborane-methyl sulfide, $ThxBHBr{\cdot}SMe_2,$ with selected organic compounds containing representative functional groups under standardized conditions (methylene chloride, $0^{\circ}C)$ were studied in order to characterize the reducing characteristics of the reagent for selective reductions. The selectivity of the reagent was also compared to the selectivity of thexylchloroborane-methyl sulfide. Thexylbromoborane appears to be a much milder and hence more selective reducing agent than thexylchloroborane. The reagent tolerates many organic functionalities. Thus, the reagent shows very little reactivity or no reactivity toward acid chlorides, esters, epoxides, amides, nitro compounds including simple olefins. However, this reagent can reduce aldehydes, ketones, carboxylic acids, nitriles, and sulfoxides. Especially the reagent reduces carboxylic acids including ${\alpha},{\beta}$ -unsaturated ones and nitriles to the corresponding aldehydes. In addition to that, thexylbromoborane shows good stereoselectivity toward cyclic ketones, much better than the chloro-derivative.

Inhibition of methionine sulfoxide reduction by dimethyl sulfoxide

  • Kwak, Geun-Hee;Choi, Seung-Hee;Kim, Jae-Ryong;Kim, Hwa-Young
    • BMB Reports
    • /
    • 제42권9호
    • /
    • pp.580-585
    • /
    • 2009
  • Dimethyl sulfoxide (DMSO) is widely used in chemistry and biology as a solvent and as a cryoprotectant. It is also used as a pharmaceutical agent for the treatment of interstitial cystitis and rheumatoid arthritis. Previous reports described DMSO as being reduced by methionine-S-sulfoxide reductase (MsrA). However, little is known about the DMSO reduction capability of methionine-R-sulfoxide reductase (MsrB) or its effect on the catalysis of methionine sulfoxide reduction. We show that mammalian MsrB2 and MsrB3 were unable to reduce DMSO. This compound inhibited MsrB2 activity but did not inhibit MsrB3 activity. We further determined that DMSO functions as an inhibitor of MsrA and MsrB2 in the reduction of methionine sulfoxides via different inhibition mechanisms. DMSO competitively inhibited MsrA activity but acted as a non-competitive inhibitor of MsrB2 activity. Our study also demonstrated that DMSO inhibits in vivo methionine sulfoxide reduction in yeast and mammalian cells.

1,3-옥사티올란술폭시드의 전위에 관한 연구 (A Study on the Rearrangement of 1,3-Oxathiolane Sulfoxides)

  • 이화석;한호규;김인규
    • 대한화학회지
    • /
    • 제33권2호
    • /
    • pp.238-246
    • /
    • 1989
  • 옥사티올란 고리에 대해서 술폭시드기와 2-메틸기가 동일 평면상에 놓인 1,3-옥사티올란술폭시드 4는 sigmatropic 전위를 통하여 고리확대 생성물로 전환한다. 이 생성물의 구조는 디히드로-1,4-옥사티인 6 또는 이것의 구조 이성체인 exo형 화합물 7의 가능성이 있다. 본 연구에서는 물리적 및 화학적 방법에 의하여 두 alternative 구조 중 올바른 구조를 밝혔다. 즉 수소핵자기 공명스펙트럼, 자외선 흡수스펙트럼, 그리고 질량분석 스펙트럼으로부터 실제로 얻어진 화합물은 디히드로옥시티인 6이었다. 또한 중수소 치환반응으로부터 환팽창 반응에서 처음 exo형 화합물 7이 생성되나 tautomerization에 의해서 결국 디히드로-1,4-옥사티인 6으로 전환함을 알았다.

  • PDF

벤조사이오펜을 기초로 한 새로운 비대칭형 올리고머의 합성과 OTFT 특성 (Synthesis of Novel Asymmetric Oligomers Based on Benzothiophene and OTFT Characteristics)

  • 이동희;박종원;정대성;박찬;김윤희;권순기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.129-129
    • /
    • 2010
  • The conjugated oligomers with rigid and fused-ring structures are of interest for the solution-processable organic thin film transistors (OTFTs) due to their well defined structure and high purity. In this study, alkyl substituted benzothiophene based oligomers were synthesized by a novel route, the key point of which is the acid-induced intermolecular cyclization reaction of aromatic methyl sulfoxides, and were confirmed by $^1H$-NMR and FT-IR studies. The obtained oligomers showed the good solubility in common organic solvents such as hexane, chloroform, and dimethylchloride at room-temperature, which is due to the introduced alkyl chain. The physical and optical properties of the oligomers were studied using differential scanning scalorimetry (DSC), cyclic-voltammetry (CV), UV-visible and PL spectra studies. Solution processed OTFT device based on synthesized oligomers show a high hole mobility of up to $0.01\;cm^2V^{-1}s^{-1}$, $I_{on}/I_{off}$ of $10^5$ and threshold voltage of -14V.

  • PDF

Analysis of Methionine Oxidation in Myosin Isoforms in Porcine Skeletal Muscle by LC-MS/MS Analysis

  • Jeong, Jin-Yeon;Jung, Eun-Young;Jeong, Tae-Chul;Yang, Han-Sul;Kim, Gap-Don
    • 한국축산식품학회지
    • /
    • 제36권2호
    • /
    • pp.254-261
    • /
    • 2016
  • The purpose of this study was to analyze oxidized methionines in the myosin isoforms of porcine longissimus thoracis, psoas major, and semimembranosus muscles by liquid chromatography (LC) and mass spectrometry (MS). A total of 836 queries matched to four myosin isoforms (myosin-1, -2, -4, and -7) were analyzed and each myosin isoform was identified by its unique peptides (7.3-13.3). Forty-four peptides were observed from all three muscles. Seventeen peptides were unique to the myosin isoform and the others were common peptides expressed in two or more myosin isoforms. Five were identified as oxidized peptides with one or two methionine sulfoxides with 16 amu of mass modification. Methionines on residues 215 (215), 438 (438), 853 (851), 856 (854), 1071 (1069), and 1106 (1104) of myosin-1 (myosin-4) were oxidized by the addition of oxygen. Myosin-2 had two oxidized methionines on residues 215 and 438. No queries matched to myosin-7 were observed as oxidized peptides. LC-MS/MS allows analysis of the oxidation of specific amino acids on specific residue sites, as well as in specific proteins in the food system.

Identification of an Essential Tryptophan Residue Residue in Alliinase from Garlic (Allium sativum) by Chemical Modification

  • 진영남;최용훈;양철학
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권1호
    • /
    • pp.68-76
    • /
    • 2001
  • We have employed chemical modification to identify amino acids essential for the catalytic activity of alliinase (EC 4.4.1.4) from garlic (Allium sativum). Alliinase degrades S-alkyl-L cysteine sulfoxides, causing the characteristic odor of garlic. The activity of alliinase was rapidly and completely inactivated by N-bromosuccinimide(NBS) and slightly decreased by succinic anhydride and N-acetylimidazole. These results indicate that tryptophanyl, lysyl, and tyrosyl residues play an important role in enzyme catalysis. The reaction of alliinase with NBA yielded a characteristic decrease in both the absorbance at 280 nm and the intrinsic fluorescence at 332 nm with increasing reagent concentration of NBS, consistent with the oxidation of tryptophan residues. Kinetic analysis, fluorometric titration of tryptophans and correlation to residual alliinase activity showed that modification of only one residue present on alliinase led to complete inhibition of alliinase activity. To identify this essential tryptophan residue, we employed chemical modification by NBS in the presence and absence of the protecting substrate analogue, S-ethyl-L-cysteine (SEC) and N-terminal sequence analysis of peptide fragment isolated by reverse phase-HPLC. A fragment containing residues 179-188 was isolated. We conclude that Trp182 is essential for alliinase activity.

Selective Reduction by Lithium Bis- or Tris(dialkylamino)aluminum Hydrides. VIII. Reaction of Lithium Tripiperidinoaluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • 차진순;이재철;주영철
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권8호
    • /
    • pp.890-895
    • /
    • 1997
  • The approximate rates and stoichiometry of the reaction of excess lithium tripiperidinoaluminum hydride (LTPDA), an alicyclic aminoaluminum hydride, with selected organic compounds containing representative functional groups under the standardized conditions (tetrahydrofuran, 25°) were examined in order to define the reducing characteristics of the reagent for selective reductions. The reducing ability of LTPDA was also compared with those of the parent lithium aluminum hydride (LAH) and lithium tris(diethylamino)aluminum hydride (LTDEA), a representative aliphatic aminoaluminum hydride. In general, the reactivity of LTPDA toward organic functionalities is weaker than LTDEA and much weaker than LAH. LTPDA shows a unique reducing characteristics. Thus, benzyl alcohol, phenol and thiols evolve a quantitative amount of hydrogen rapidly. The rate of hydrogen evolution of primary, secondary and tertiary alcohols is distinctive. LTPDA reduces aldehydes, ketones, esters, acid chlorides and epoxides readily to the corresponding alcohols. Quinones, such as p-benzoquinone and anthraquinone, are reduced to the corresponding diols without hydrogen evolution. Tertiary amides and nitriles are also reduced readily to the corresponding amines. The reagent reduces nitro compounds and azobenzene to the amine stages. Disulfides are reduced to thiols, and sulfoxides and sulfones are converted to sulfides. Additionally, the reagent appears to be a good partial reducing agent to convert primary carboxamides into the corresponding aldehydes.

Reaction of Lithium Gallium Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • 최정훈;윤문영;윤종훈;정동원
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권5호
    • /
    • pp.416-421
    • /
    • 1995
  • The approximate rates and stoichiometry of the reaction of excess lithium gallium hydride with selected organic compounds containing representative functional groups were examined under the standard conditions (diethyl ether, 0 $^{\circ}C)$ in order to compare its reducing characteristics with lithium aluminum hydride and lithium borohydride previously reported, and enlarge the scope of its applicability as a reducing agent. Alcohols, phenol, and amines evolve hydrogen rapidly and quantitatively. However lithium gallium hydride reacts with only one active hydrogen of primary amine. Aldehydes and ketones of diverse structure are rapidly reduced to the corresponding alcohols. Conjugated aldehyde and ketone such as cinnamaldehyde and methyl vinyl ketone are rapidly reduced to the corresponding saturated alcohols. p-Benzoquinone is mainly reduces to hydroquinone. Caproic acid and benzoic acid liberate hydrogen rapidly and quantitatively, but reduction proceeds slowly. The acid chlorides and esters tested are all rapidly reduced to the corresponding alcohols. Alkyl halides and epoxides are reduced rapidly with an uptake of 1 equiv of hydride. Styrene oxide is reduced to give 1-phenylethanol quantitatively. Primary amides are reduced slowly. Benzonitrile consumes 2.0 equiv of hydride rapidly, whereas capronitrile is reduced slowly. Nitro compounds consumed 2.9 equiv of hydride, of which 1.9 equiv is for reduction, whereas azobenzene, and azoxybenzene are inert toward this reagent. Cyclohexanone oxime is reduced consuming 2.0 equiv of hydride for reduction at a moderate rate. Pyridine is inert toward this reagent. Disulfides and sulfoxides are reduced slowly, whereas sulfide, sulfone, and sulfonate are inert under these reaction conditions. Sulfonic acid evolves 1 equiv of hydrogen instantly, but reduction is not proceeded.

아세톡시 1,3-옥사티올란의 입체화학의 결정 (Determination of Stereochemistry of Acetoxy 1,3-Oxathiolane)

  • 한호규;장기혁;이화석;마혜덕
    • 대한화학회지
    • /
    • 제40권5호
    • /
    • pp.357-364
    • /
    • 1996
  • 아세톡시 1,3-옥사티올란 1의 이성체들의 입체화학을 두 가지 방법에 의해 결정하였다. 첫째, 산촉매하에서 디히드로옥사티인 2로의 전환되는 반응속도 차이에 의해 알파이성체 7과 베타이성체 9의 구조를 결정하였다. 이탈기인 아세톡시기가 황원자와 트랜스 위치에 있을 때 1,3-옥사티올란 고리에 대한 입체장애가 적은 이성체가 알파이성체 7이며 반응속도가 느린 이성체가 베타이성체 9이었다. 둘째, 술폭시드의 각각의 diastereomer들의 중수소 치환반응에서, methine 수소가 중수소로 치환된 화합물은 시스이성체 15, 17, 그리고 메틸기의 수소가 중수소로 치환된 화합물은 트랜스이성체 16, 18이었다. Methine 또는 메틸기의 수소의 중수소로의 치환은 [2,3] 시그마트로픽 전위에 의한 입체특이적 개환 및 폐환의 결과였다.

  • PDF

마늘의 저장 및 효소처리 조건에 따른 함황화합물의 변화

  • 신동빈
    • 식품저장과 가공산업
    • /
    • 제7권1호
    • /
    • pp.33-44
    • /
    • 2008
  • 마늘의 저장 중 생리활성과 향미에 중요한 영향을 미치는 성분의 변화를 발표된 논문을 중심으로 정리하여 살펴보았다. 또한 마늘의 냄새를 최소화하고 생리활성을 극대화할 수 있는 기능성식품의 소재개발 타당성을 살펴보기 위하여 열처리(blanching)로 마늘 중의 효소를 모두 불활성화 시킨 후, 이에 마늘로부터 추출한 alliinase를 가하여 반응조건에 따른 alk(en)yl thiosulfinates 생성 및 이들의 분해산물인 휘발성 황함유화합물의 함량변화를 측정하였다. 수확한 마늘의 최종 저장물질로 알려진 -glutamyl-S-alk(en)yl-L-cysteines는 마늘중에 존재하는 -glutamyl-transpeptidase 및 oxidase의 작용에 의하여 감소한 반면 S-alk(en)yl cysteine sulfoxide는 감소한 만큼 증가하였으며, 이는 $-3^{\circ}C$ 및 실온($23^{\circ}C$)에서 보다도 냉장온도($4^{\circ}C$)에서 가장 많이 변화하는 것으로 나타났다. 이러한 감소 및 증가현상은 -glutamyl-S-(2-popenyl)-L-cysteine이 -glutamyl-S-(trans-1-propenyl)-L- cysteine이나 -glutamyl-S-methyl-L-cysteine보다 더 컸다. -glutamyl-S-(2-propen yl)-L-cysteine은 $4^{\circ}C$에서 저장 60일 만에 66%가 감소한 반면 이로부터 생성된 S-(2- popenyl)-L-cysteine sulfoxide는 그 만큼 증가하였다. -glutamyl-S-(trans-1-propenyl)-L-cysteine 및 -glutamyl-S-methyl-L-cysteine도 $4^{\circ}C$에서 150일간 저장한 경우 각각 81% 및 39%가 감소하고, 이들로부터 각각 생성된 S-(trans-1- propenyl)-L-cysteine sulfoxides 및 S-methyl-L-cysteine sulfoxide는 증가하였다. 한편 열처리 마늘에 alliinase를 가하여 함황화합물을 재생성 시킨 결과 8종의 S-alk(en)yl cysteine sulfoxides를 확인할 수 있었다. S-(2-propenyl)-L-cysteine sulfoxide은 전체 thiosulfinates함량의 약 60%를 차지하는 것으로 나타났다. 100, 200, 300 및 400 unit의 alliinase를 첨가하여 15분간 반응시킨 결과 총 thiosulfinates는 생마늘(대조구)에 비하여 각각 37, 68, 77 및 80%가 생성되는 것으로 나타났다. GC/MSD를 이용하여 대조구 및 효소를 첨가하여 반응시킨 시료의 휘발성 향기성분을 분석한 결과 alliinase를 100, 200, 300 및 400 unit 첨가하여 15분간 반응시키면 각각 마늘의 휘발성 향기성분이 25, 36, 66및 76% 씩 재 생성되는 것으로 나타났다. 이상의 결과를 종합해 볼 때 마늘을 이용한 제품개발이나 연구를 할 경우 마늘의 저장조건에 따른 생리활성물질의 분석결과를 근거로 하여 이루어져야 하며, 또한 효소를 이용하여 적절히 반응시키면 마늘 냄새를 $30{\sim}80%$ 범위 내에서 조절이 가능한 것으로 나타났다.

  • PDF