Browse > Article
http://dx.doi.org/10.5851/kosfa.2016.36.2.254

Analysis of Methionine Oxidation in Myosin Isoforms in Porcine Skeletal Muscle by LC-MS/MS Analysis  

Jeong, Jin-Yeon (Institute of Agriculture & Life Science, Gyeongsang National University)
Jung, Eun-Young (Division of Applied Life Science (BK21 plus), Gyeongsang National University)
Jeong, Tae-Chul (Institute of Agriculture & Life Science, Gyeongsang National University)
Yang, Han-Sul (Institute of Agriculture & Life Science, Gyeongsang National University)
Kim, Gap-Don (Institute of Agriculture & Life Science, Gyeongsang National University)
Publication Information
Food Science of Animal Resources / v.36, no.2, 2016 , pp. 254-261 More about this Journal
Abstract
The purpose of this study was to analyze oxidized methionines in the myosin isoforms of porcine longissimus thoracis, psoas major, and semimembranosus muscles by liquid chromatography (LC) and mass spectrometry (MS). A total of 836 queries matched to four myosin isoforms (myosin-1, -2, -4, and -7) were analyzed and each myosin isoform was identified by its unique peptides (7.3-13.3). Forty-four peptides were observed from all three muscles. Seventeen peptides were unique to the myosin isoform and the others were common peptides expressed in two or more myosin isoforms. Five were identified as oxidized peptides with one or two methionine sulfoxides with 16 amu of mass modification. Methionines on residues 215 (215), 438 (438), 853 (851), 856 (854), 1071 (1069), and 1106 (1104) of myosin-1 (myosin-4) were oxidized by the addition of oxygen. Myosin-2 had two oxidized methionines on residues 215 and 438. No queries matched to myosin-7 were observed as oxidized peptides. LC-MS/MS allows analysis of the oxidation of specific amino acids on specific residue sites, as well as in specific proteins in the food system.
Keywords
protein oxidation; LC-MS/MS; myosin; methionine;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chen, M. and Cook, K. D. (2007) Oxidation artifacts in the electrospray mass spectrometry of Aβ peptide. Anal. Chem. 79, 2031-2036.   DOI
2 Abreu, E., Quirox-Rothe, E., Mayoral, A. I., Vivo, J. M., Robina, Á., Guillén, M. T., Agüera, E., and Rivero, J. L. (2006) Myosin heavy chain fibre types and fibre sizes in nulliparous and primiparous ovariectomized Iberian sows: Interaction with two alternative rearing systems during the fattening period. Meat Sci. 74, 359-372.   DOI
3 Armenteros, M. Heinonen, M., Ollilainen, V., Toldrá, F., and Estévez, M. (2009) Analysis of protein carbonyls in meat products by using the DNPH method, fluorescence spectroscopy and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Meat Sci. 83, 104-112.   DOI
4 Bernevic, B., Petre, B. A., Galetskiy, D., Werner, C., Wicke, M., Schellander, K., and Przybylski, M. (2011) Degradation and oxidation postmortem of myofibrillar proteins in porcine skeleton muscle revealed by high resolution mass spectrometric proteome analysis. Int. J. Mass Spectrom. 305, 217-227.   DOI
5 Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.   DOI
6 Chang, K. C., Costa, N., Blackley, R., Southwood, O., Evans, G., Plastow, G., Wood, J. D., and Richardson, R. I. (2003) Relationships of myosin heavy chain fibre types to meat quality traits in traditional and modern pigs. Meat Sci. 64, 93-103.   DOI
7 Choi, Y. M., Ryu, Y. C., and Kim, B. C. (2007) Influence of myosin heavy- and light chain isoforms on early postmortem glycolytic rate and pork quality. Meat Sci. 76, 281-288.   DOI
8 Coirault, C., Guellich, A., Barbry, T., Samuel, J. L., Riou, B., and Lecarpentier, Y. (2007) Oxidative stress of myosin contributes to skeletal muscle dysfunction in rats with chronic heart failure. Am. J. Physiol. Heart Circ. Physiol. 292, H1009-H1017.   DOI
9 Daneshvar, B., Frandsen, H., Artrup, H., and Dragsted, L. O. (1997) γ-Glutamyl semialdehyde and α-amino-adipic semialdehyde: Biomarkers of oxidative damage to proteins. Biomarkers 2, 117-123.   DOI
10 Decker, E. A., Xiong, Y. L., Calvert, J. T., Crum, A. D., and Blanchard, S. P. (1993) Chemical, physical, and functional-properties of oxidized turkey white muscle myofibrillar proteins. J. Agric. Food Chem. 41, 186-189.   DOI
11 Erickson, J. R., Joiner, M. L., Guan, X., Kutschke, W., Yang, J., Oddis, C. V., Bartlett, R. K., Lowe, J. S., O’Donnell, S. E., Aykin-Burns, N., Zimmerman, M. C., Zimmerman, K. M, Ham, A. J., Weiss, R. M., Spitz, D. R., Shea, M. A., Colbrau, R. J., Mohler, P. J., and Anderson, M. E. (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133, 462-474.   DOI
12 Ghesquière, B. and Gevaert, K. (2014) Proteomics methods to study methionine oxidation. Mass Spectrom. Rev. 33, 147-156.   DOI
13 Ghesquière, B., Jonckheere, V., Colaert, N., Van Durme, J., Timmerman, E., Goethals, M., Schymkowita, J., Rousseau, F., Vandekerckhove, J., and Gevaert, K. (2011) Redox proteomics of protein-bound methionine oxidation. Mol. Cell Proteomics 10, M110.006866.
14 Estévez, M., Ollilainen, V., and Heinonen, M. (2009) Analysis of protein oxidation markers α-aminoadipic and γ-glutamic semialdehydes in food proteins using liquid chromatography (LC)-electrospray ionization (ESI)-multistage tandem mass spectrometry (MS). J. Agric. Food Chem. 57, 3901-3910.   DOI
15 Garrison, W. M. (1987) Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem. Rev. 87, 381-398.   DOI
16 Hanan, T. and Shaklai, N. (1995) Peroxidative interaction of myoglobin and myosin. Eur. J. Biochem. 233, 930-936.   DOI
17 Hardine, S. C., Larue, C. T., Oh, M. H., Jain, V., and Huber, S. C. (2009) Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis. Biochem. J. 422, 305-312.   DOI
18 Jongberg, S., Gislason, N. E., Lund, M. N., Skibsted, L. H., and Waterhouse, A. L. (2011) Thiol-quinone adduct formation in myofibrillar proteins detected by LC-MS. J. Agric. Food Chem. 59, 6900-6905.   DOI
19 Kim, G. D. (2014) Analysis of myosin heavy chain isoforms from logissimus toracis muscle of Hanwoo steer by electrophoresis and LC-MS/MS. Korean J. Food Sci. An. 34, 656-664.   DOI
20 Kim, G. D., Jeong, J. Y., Yang, H. S., and Joo, S. T. (2015) Analysis of oxidized methionione in myosin isoforms of porcine longissimus thoracis muscle at 24 h postmortem. Proceed. 61st Int. Cong. Meat Sci. Technol., Clermont-Ferrand, France, pp. 163.
21 Levine, R. L. (1984) Mixed-function oxidation of histidine residues. Methods Enzymol. 107, 370-376.   DOI
22 Kim, G. D., Ryu, Y. C., Jeong, J. Y., Yang, H. S., and Joo, S. T. (2013) Relationship between pork quality and characteristics of muscle fibers classified by the distribution of myosin heavy chain isoforms. J. Anim. Sci. 91, 5525-5534.   DOI
23 Kim, G. D., Ryu, Y. C., Jo, C., Lee, J. G., Yang, H. S., Jeong, J. Y., and Joo, S. T. (2014) The characteristics of myosin heavy chain-based fiber types in porcine longissimus dorsi muscle. Meat Sci. 96, 712-718.   DOI
24 Lefaucheur, L., Ecolan, P., Plantard, L., and Gueguen, N. (2002) New insights into muscle fiber types in the pig. J. Histochem. Cytochem. 50, 719-730.   DOI
25 Liu, H., Ponniah, G., Neill, A., Patel, R., and Andrien, B. (2013) Accurate determination of protein methionine oxidation by stable isotope labelling and LC-MS analysis. Anal. Chem. 85, 11705-11709.   DOI
26 Lund, M. N., Heinonen, M., Baron, C. P., and Estévez, M. (2011) Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 55, 83-95.   DOI
27 Lund, M. N., Lametsch, R., Hviid, M. S., Jensen, O. N., and Skibsted, L. H. (2007) High-oxygen packaging atmosphere influences protein oxidation and tenderness of porcine longissimus dorsi during chill storage. Meat Sci. 77, 295-303.   DOI
28 Lund, M. N., Luxford, C., Skibsted, L. H., and Davies, M. J. (2008) Oxidation of myosin by heam proteins generates myosin radicals and protein cross-links. Biochem. J. 410, 565-574.   DOI
29 Rayment, I. Rypniewski, W. R., Schmidt-Base, K., Smith, R., Tomchick, D. R., Benning, M. M., Winkelmann, D. A., Wesenberg, G., and Holden, H. M. (1993) Three dimensional structure of myosin subfragment-1: A molecular motor. Science 261, 50-58.   DOI
30 Martinaud, A., Mercier, Y., Marinova, P., Tassy, C. Gatellier, P., and Renerre, M. (1997) Comparison of oxidative processes on myofibrillar proteins from beef during maturation and by different model oxidation systems. J. Agric. Food Chem. 45, 2481-2487.   DOI
31 Oh-Ishie, M., Ueno, T., and Maeda, T. (2003) Proteomic method detects oxidatively induced protein carbonyls in muscles of a diabetes model Otsuka Long-Evans Tokushima fatty (Oletf) rat. Free Radical Biol. Med. 34, 11-22.   DOI
32 Oliver, C. N., Ahn, B. W., Moerman, E. J., Goldstein, S., and Stadtman, E. R. (1987) Age-related changes in oxidized proteins. J. Biol. Chem. 262, 5488-5491.
33 Park, S., K., Gunawan, A. M., Scheffler, T. L., Grant, A. L., and Gerrard, D. E. (2009) Myosin heavy chain isoform content and energy metabolism can be uncoupled in pig skeletal muscle. J. Anim. Sci. 87, 522-531.
34 Rowe, L. J., Maddock, K. R., Lonergan, S. M., and Huff-Lonergan, E. (2004) Influence of early postmortem protein oxidation on beef quality. J. Anim. Sci. 82, 785-793.   DOI
35 Shacter, E. (2000) Quantification and significance of protein oxidation in biological samples. Drug Met. Rev. 32, 307-326.   DOI
36 Soladoye, O. P., Juárez, M. L., Aalhus, J. L., Shand, P., and Estévez, M. (2015) Protein oxidation in processed meat: Mechanisms and potential implications on human health. Compr. Rev. Food Sci. F. 14, 106-122.   DOI
37 Stadtman, E. R. and Levine, R. L. (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25, 207-218.   DOI
38 Stadtman, E. R. (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu. Rev. Biochem. 62, 797-821.   DOI
39 Stadtman, E. R. and Berlett, B. S. (1988) Fenton chemistry revisited: Amino acid oxidation. Basic Life Sci. 49, 131-136.
40 Winterbourn, C. C. (1990) Oxidative reactions of hemoglobin. Methods Enzymol. 186, 265-272.   DOI
41 Tokunaga, M. Sutoh, K. Toyoshima, C. and Wayabashi, T. (1987) Location of the ATPase site of myosin determined by three-dimensional electron microscopy. Nature 329, 635-638.   DOI
42 Vogt, W. (1995) Oxidation of methionyl residues in proteins: Tools, targets, and reversal. Free Radic. Biol. Med. 18, 93-105.   DOI
43 Xiong, Y. L. (2000) Protein oxidation and implications for muscle food quality. In: Decker, E., Faustman, C., Clemente, J. L. B., Antioxidant in muscle foods. Chichester, UK, Wiley. pp. 85-111.